ترغب بنشر مسار تعليمي؟ اضغط هنا

A high resolution, hard x-ray photoemission investigation of La_(2-2x)Sr_(1+2x)Mn_2O_7 (0.30<x<0.50): on microscopic phase separation and the surface electronic structure of a bilayered CMR manganite

42   0   0.0 ( 0 )
 نشر من قبل Sanne Jong de
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photoemission data taken with hard x-ray radiation on cleaved single crystals of the bilayered, colossal magnetoresistant manganite La_(2-2x)Sr_(1+2x)Mn_2O_7 (LSMO) with 0.30<x<0.50 are presented. Making use of the increased bulk-sensitivity upon hard x-ray excitation it is shown that the core level footprint of the electronic structure of the LSMO cleavage surface is identical to that of the bulk. Furthermore, by comparing the core level shift of the different elements as a function of doping level x, it is shown that microscopic phase separation is unlikely to occur for this particular manganite well above the Curie temperature.

قيم البحث

اقرأ أيضاً

By using laboratory x-ray photoemission spectroscopy (XPS) and hard x-ray photoemission spectroscopy (HX-PES) at a synchrotron facility, we report an empirical semi-quantitative relationship between the valence/core-level x-ray photoemission spectral weight and electrical conductivity in La_{1-x}Sr_{x}MnO_{3} as a function of x. In the Mn 2p_{3/2} HX-PES spectra, we observed the shoulder structure due to the Mn^{3+} well-screened state. However, the intensity at x=0.8 was too small to explain its higher electrical conductivity than x=0.0, which confirms our recent analysis on the Mn 2p_{3/2} XPS spectra. The near-Fermi level XPS spectral weight was found to be a measure of the variation of electrical conductivity with x in spite of a far lower energy resolution compared with the energy scale of the quasiparticle (coherent) peak because of the concurrent change of the coherent and incoherent spectral weight.
We report a magnetic force microscopy study of the magnetic domain evolution in the layered manganite La$_{2-2x}$Sr$_{1+2x}$Mn$_2$O$_7$ (with $x=0.32$). This strongly correlated electron compound is known to exhibit a wide range of magnetic phases, i ncluding a recently uncovered biskyrmion phase. We observe a continuous transition from dendritic to stripe-like domains, followed by the formation of magnetic bubbles due to a field- and temperature dependent competition between in-plane and out-of-plane spin alignments. The magnetic bubble phase appears at comparable field- and temperature ranges as the biskyrmion phase, suggesting a close relation between both phases. Based on our real-space images we construct a temperature-field phase diagram for this composition.
We study the structural, magnetic, transport and electronic properties of LaCoO$_3$ with Sr/Nb co-substitution, i.e., La$_{(1-2x)}$Sr$_{2x}$Co$_{(1-x)}$Nb$_{x}$O$_3$ using x-ray and neutron diffraction, dc and ac-magnetization, neutron depolarization , dc-resistivity and photoemission measurements. The powder x-ray and neutron diffraction data were fitted well with the rhombohedral crystal symmetry (space group textit{R$bar{3}$c}) in Rietveld refinement analysis. The calculated effective magnetic moment ($approx$3.85~$mu_B$) and average spin ($approx$1.5) of Co ions from the analysis of magnetic susceptibility data are consistent with 3+ state of Co ions in intermediate-spin (IS) and high-spin (HS) states in the ratio of $approx$50:50, i.e., spin-state of Co$^{3+}$ is preserved at least up to $x=$ 0.1 sample. Interestingly, the magnetization values were significantly increased with respect to the $x=$ 0 sample, and the M-H curves show non-saturated behavior up to an applied maximum magnetic field of $pm$70 kOe. The ac-susceptibility data show a shift in the freezing temperature with excitation frequency and the detailed analysis confirm the slower dynamics and a non-zero value of the Vogel-Fulcher temperature T$_0$, which suggests for the cluster spin glass. The unusual magnetic behavior indicates the presence of complex magnetic interactions at low temperatures. The dc-resistivity measurements show the insulating nature in all the samples. However, relatively large density of states $approx$10$^{22}$ eV$^{-1}$cm$^{-3}$ and low activation energy $approx$130~meV are found in $x=$ 0.05 sample. Using x-ray photoemission spectroscopy, we study the core-level spectra of La 3$d$, Co 2$p$, Sr 3$d$, and Nb 3$d$ to confirm the valence state.
GdNi is a ferrimagnetic material with a Curie temperature Tc = 69 K which exhibits a large magnetocaloric effect, making it useful for magnetic refrigerator applications. We investigate the electronic structure of GdNi by carrying out x-ray absorptio n spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) at T = 25 K in the ferrimagnetic phase. We analyze the Gd M$_{4,5}$-edge ($3d$ - $4f$) and Ni L$_{2,3}$-edge ($2p$ - $3d$) spectra using atomic multiplet and cluster model calculations, respectively. The atomic multiplet calculation for Gd M$_{4,5}$-edge XAS indicates that Gd is trivalent in GdNi, consistent with localized $4f$ states. On the other hand, a model cluster calculation for Ni L$_{2,3}$-edge XAS shows that Ni is effectively divalent in GdNi and strongly hybridized with nearest neighbour Gd states, resulting in a $d$-electron count of 8.57. The Gd M$_{4,5}$-edge XMCD spectrum is consistent with a ground state configuration of S = 7/2 and L=0. The Ni L$_{2,3}$-edge XMCD results indicate that the antiferromagnetically aligned Ni moments exhibit a small but finite magnetic moment ( $m_{tot}$ $sim$ 0.12 $mu_B$ ) with the ratio $m_{o}/m_{s}$ $sim$ 0.11. Valence band hard x-ray photoemission spectroscopy shows Ni $3d$ features at the Fermi level, confirming a partially filled $3d$ band, while the Gd $4f$ states are at high binding energies away from the Fermi level. The results indicate that the Ni $3d$ band is not fully occupied and contradicts the charge-transfer model for rare-earth based alloys. The obtained electronic parameters indicate that GdNi is a strongly correlated charge transfer metal with the Ni on-site Coulomb energy being much larger than the effective charge-transfer energy between the Ni $3d$ and Gd $4f$ states.
We present the electronic structure of Sr_{1-(x+y)}La_{x+y}Ti_{1-x}Cr_{x}O_{3} investigated by high-resolution photoemission spectroscopy. In the vicinity of Fermi level, it was found that the electronic structure were composed of a Cr 3d local state with the t_{2g}^{3} configuration and a Ti 3d itinerant state. The energy levels of these Cr and Ti 3d states are well interpreted by the difference of the charge-transfer energy of both ions. The spectral weight of the Cr 3d state is completely proportional to the spin concentration x irrespective of the carrier concentration y, indicating that the spin density can be controlled by x as desired. In contrast, the spectral weight of the Ti 3d state is not proportional to y, depending on the amount of Cr doping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا