ﻻ يوجد ملخص باللغة العربية
A new calculation of nuclear enhancement factor, used in estimation of Galactic diffuse gamma-ray flux from proton-proton interaction in order to take account of heavy nuclei included in cosmic-rays and interstellar matter, is presented by use of a Monte Carlo simulator, DPMJET-3. A new value of 1.8-2.0 in the energy range of 6-1000 GeV/nucleon, slightly increasing with kinetic energy of projectile cosmic rays, is about 20% larger than previous estimates.
We demonstrate that young star clusters have a $gamma$-ray surface brightness comparable to that of the diffuse Galactic emission (DGE), and estimate that their sky coverage in the direction of the inner Galaxy exceeds unity. We therefore suggest that they comprise a significant fraction of the DGE.
In this work, we revisit the all-sky Galactic diffuse $gamma$-ray emission taking into account the new measurements of cosmic ray electron/positron spectrum by PAMELA, ATIC and Fermi, which show excesses of cosmic electrons/positrons beyond the expec
The Picard code for the numerical solution of the Galactic cosmic ray propagation problem allows for high-resolution models that acknowledge the 3D structure of our Galaxy. Picard was used to determine diffuse gamma-ray emission of the Galaxy over th
Diffuse $gamma$-ray emission is the most prominent observable signature of celestial cosmic-ray interactions at high energies. While already being investigated at GeV energies over several decades, assessments of diffuse $gamma$-ray emission at TeV e
The propagation of particles accelerated at supernova remnant shocks and escaping the parent remnants is likely to proceed in a strongly non-linear regime, due to the efficient self-generation of Alfven waves excited through streaming instability nea