ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of Bubble Nebula using IUE high resolution Spectra

273   0   0.0 ( 0 )
 نشر من قبل Blesson Mathew
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we have analyzed IUE high resolution spectra of the central star (BD+602522) of the Bubble nebula. We discuss velocities of the different regions along the line of sight to the bubble. We find that the Bubble Nebula is younger (by a factor of 100) than the exciting star suggesting that either the bubble is expanding into an inhomogenuous interstellar medium or that the mechanics of the stellar wind are not fully understood.

قيم البحث

اقرأ أيضاً

37 - E. F. Vieira 1995
Along the life of the IUE project, a large archive with spectral data has been generated, requiring automated classification methods to be analyzed in an objective form. Previous automated classification methods used with IUE spectra were based on mu ltivariate statistics. In this paper, we compare two classification methods that can be directly applied to spectra in the archive: metric distance and artificial neural networks. These methods are used to classify IUE low-dispersion spectra of normal stars with spectral types ranging from O3 to G5. The classification based on artificial neural networks performs better than the metric distance, allowing the determination of the spectral classes with an accuracy of 1.1 spectral subclasses. KeyWords: data analysis, spectroscopic, fundamental parameters
The eclipsing and strongly interacting binary star system R Arae (HD149730) is in a very active and very short-lived stage of its evolution. R Ara consists of a B9V primary and an unknown secondary. We have collected the International Ultraviolet Exp lorer (IUE) archival data on R Ara, with most of the data being studied for the first time. There are 117 high resolution IUE spectra taken in 1980, 1982, 1985, 1989, and 1991. We provide photometric and spectroscopic evidence for mass transfer and propose a geometry for the accretion structure. We use colour scale radial velocity plots to view the complicated behavior of the blended absorption features and to distinguish the motions of hotter and cooler regions within the system. We observed a primary eclipse of R Ara in 2008 and have verified that its period is increasing. A model of the system and its evolutionary status is presented.
140 - P. Boisse 2015
Aims. We have searched for temporal variations of narrow absorption lines in high resolution quasar spectra. A sample of 5 distant sources have been assembled, for which 2 spectra - VLT/UVES or Keck/HIRES - taken several years apart are available. Me thods. We first investigate under which conditions variations in absorption line profiles can be detected reliably from high resolution spectra, and discuss the implications of changes in terms of small-scale structure within the intervening gas or intrinsic origin. The targets selected allow us to investigate the time behavior of a broad variety of absorption line systems, sampling diverse environments: the vicinity of active nuclei, galaxy halos, molecular-rich galaxy disks associated with damped Lya systems, as well as neutral gas within our own Galaxy. Results. Absorption lines from MgII, FeII or proxy species with lines of lower opacity tracing the same kind of gas appear to be remarkably stable (1 sigma upper limits as low as 10 % for some components on scales in the range 10 - 100 au), even for systems at z_abs ~ z_e. Marginal variations are observed for MgII lines toward PKS 1229-021 at z_abs = 0.83032; however, we detect no systems displaying changes as large as those reported in low resolution SDSS spectra. In neutral or diffuse molecular media, clear changes are seen for Galactic NaI lines toward PKS 1229-02 (decrease of N by a factor of four for one of the five components over 9.7 yr), corresponding to structure at a scale of about 35 au, in good agreement with known properties of the Galactic interstellar medium. Tentative variations are detected for H2 J=3 lines toward FBQS J2340-0053 at z_abs =2.05454 (~35% change in column density), suggesting the existence of structure at the 10 au-scale for this warm gas. A marginal change is also seen in CI from another velocity component (~70% variation in N(CI)).
Spectrum syntheses for three elements (Mg, Na, and Eu) in high-resolution integrated light spectra of the Galactic globular clusters 47 Tuc, M3, M13, NGC 7006, and M15 are presented, along with calibration syntheses of the Solar and Arcturus spectra. Iron abundances in the target clusters are also derived from integrated light equivalent width analyses. Line profiles in the spectra of these five globular clusters are well fit after careful consideration of the atomic and molecular spectral features, providing levels of precision that are better than equivalent width analyses of the same integrated light spectra, and that are comparable to the precision in individual stellar analyses. The integrated light abundances from the 5528 and 5711 A Mg I lines, the 6154 and 6160 A Na I lines, and the 6645 A Eu II line fall within the observed ranges from individual stars; however, these integrated light abundances do not always agree with the average literature abundances. Tests with the second parameter clusters M3, M13, and NGC 7006 show that assuming an incorrect horizontal branch morphology is likely to have only a small (< 0.06 dex) effect on these Mg, Na, and Eu abundances. These tests therefore show that integrated light spectrum syntheses can be applied to unresolved globular clusters over a wide range of metallicities and horizontal branch morphologies. Such high precision in integrated light spectrum syntheses is valuable for interpreting the chemical abundances of globular cluster systems around other galaxies.
We present an analysis of the UV (IUE) spectra of the central stars of Hb7 and Sp3. Comparison with the IUE spectrum of the standard star HD 93205 leads to a spectral classification of O3V for these stars, with an effective temperature of 50,000 K. F rom the P-Cygni profiles of CIV (1550 A), we derive stellar wind velocities and mass loss rates of -1317 km/s +/- 300 km/s and 2.9X10^{-8} solar mass yr^{-1} and -1603 km/s +/- 400 km/s and 7X10^{-9} solar mass yr^{-1} for Hb7 and Sp3 respectively. From all the available data, we reconstruct the spectral energy distribution of Hb7 and Sp3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا