ﻻ يوجد ملخص باللغة العربية
This paper shows that the presence of two dynamical regimes, characterized by different precessional-axis, is the origin of the non-monotonic behavior of the output integrated power for large-amplitude magnetization precession driven by spin-polarized current in nanoscale exchange biased spin-valves. In particular, at the transition current between those two regimes exists an abruptly loss in the integrated output power. After the introduction of a time-frequency analysis of magnetization dynamics based on the wavelet transform, we performed a numerical experiment by means of micromagnetic simulations. Our results predicted that, together with a modulation of the frequency of the main excited mode of the magnetization precession, at high non-linear dynamical regime the instantaneous output power of the spin-torque oscillator can disappear and then reappear at nanosecond scale.
We present a time-resolved study of the magnetization dynamics in a microstructured Cr$|$Heusler$|$Pt waveguide driven by the Spin-Hall-Effect and the Spin-Transfer-Torque effect via short current pulses. In particular, we focus on the determination
Magnetic hopfion is three-dimensional (3D) topological soliton with novel spin structure that would enable exotic dynamics. Here we study the current driven 3D dynamics of a magnetic hopfion with unit Hopf index in a frustrated magnet. Attributed to
The concept of perpendicular shape anisotropy spin-transfer torque magnetic random-access memory (PSA-STT-MRAM) consists in increasing the storage layer thickness to values comparable to the cell diameter, to induce a perpendicular shape anisotropy i
The classical impact of electrical currents on magnetic nanostructures is analyzed with numerical calculations of current-density distributions and Oersted fields in typical contact geometries. For the Oersted field calculation, a hybrid finite eleme
The spin-transfer-torque-driven (STT-driven) dynamics of a domain wall in an easy-axis rare-earth transition-metal ferrimagnet is investigated theoretically and numerically in the vicinity of the angular momentum compensation point $T_A$, where the n