ﻻ يوجد ملخص باللغة العربية
The Solar Optical Telescope onboard Hinode revealed the fine-scale structure of the Evershed flow and its relation to the filamentary structures of the sunspot penumbra. The Evershed flow is confined in narrow channels with nearly horizontal magnetic fields, embedded in a deep layer of the penumbral atmosphere. It is a dynamic phenomenon with flow velocity close to the photospheric sound speed. Individual flow channels are associated with tiny upflows of hot gas (sources) at the inner end and downflows (sinks) at the outer end. SOT/Hinode also discovered ``twisting motions of penumbral filaments, which may be attributed to the convective nature of the Evershed flow. The Evershed effect may be understood as a natural consequence of thermal convection under a strong, inclined magnetic field. Current penumbral models are discussed in the lights of these new Hinode observations.
Aims. We study the coherency of solar spicules intensity oscillations with increasing height above the solar limb in quiet Sun, active Sun and active region using observations from HINODE/SOT. Existence of coherency up to transition region strengthen
We present observations of a precursory signature that would be helpful for understanding the formation process of sunspot penumbrae. The Hinode Solar Optical Telescope successfully captured the entire evolution of a sunspot from the pore to a large
The tropical wisdom that when it is hot and dense we can expect rain might also apply to the Sun. Indeed, observations and numerical simulations have shown that strong heating at footpoints of loops, as is the case for active regions, puts their coro
We present the first simultaneous observations of chromospheric anemone jets in solar active regions with Hinode SOT Ca II H broadband filetergram and Ca II K spetroheliogram on the Domeless Solar Telescope (DST) at Hida Observatory. During the coord