ترغب بنشر مسار تعليمي؟ اضغط هنا

The Evershed Effect with SOT/Hinode

148   0   0.0 ( 0 )
 نشر من قبل Kiyoshi Ichimoto Dr.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Solar Optical Telescope onboard Hinode revealed the fine-scale structure of the Evershed flow and its relation to the filamentary structures of the sunspot penumbra. The Evershed flow is confined in narrow channels with nearly horizontal magnetic fields, embedded in a deep layer of the penumbral atmosphere. It is a dynamic phenomenon with flow velocity close to the photospheric sound speed. Individual flow channels are associated with tiny upflows of hot gas (sources) at the inner end and downflows (sinks) at the outer end. SOT/Hinode also discovered ``twisting motions of penumbral filaments, which may be attributed to the convective nature of the Evershed flow. The Evershed effect may be understood as a natural consequence of thermal convection under a strong, inclined magnetic field. Current penumbral models are discussed in the lights of these new Hinode observations.

قيم البحث

اقرأ أيضاً

Aims. We study the coherency of solar spicules intensity oscillations with increasing height above the solar limb in quiet Sun, active Sun and active region using observations from HINODE/SOT. Existence of coherency up to transition region strengthen s the theory of the coronal heating and solar wind through energy transport and photospheric oscillations. Methods. Using time sequences from the HINODE/SOT in Ca II H line, we investigate oscillations found in intensity profiles at different heights above the solar limb. We use the Fourier and wavelet analysis to measure dominant frequency peaks of intensity at the heights, and phase difference between oscillations at two certain heights, to find evidence for the coherency of the oscillations. Finally, we can calculate the energy and the mass transported by spicules providing energy equilibrium, according to density values of spicules at different heights. To extend this work, we can also consider coherent oscillations at different latitudes and suggest to study of oscillations which may be obtained from observations of other satellites.
We present observations of a precursory signature that would be helpful for understanding the formation process of sunspot penumbrae. The Hinode Solar Optical Telescope successfully captured the entire evolution of a sunspot from the pore to a large well-developed sunspot with penumbra in an emerging flux region appeared in NOAA Active Region 11039. We found an annular zone (width 3-5) surrounding the umbra (pore) in Ca II H images before the penumbra is formed around the umbra. The penumbra was developed as if to fill the annular zone. The annular zone shows weak magnetogram signals, meaning less magnetic flux or highly inclined fields there. Pre-existing ambient magnetic field islands were moved to be distributed at the outer edge of the annular zone and did not come into the zone. There is no strong systematic flow patterns in the zone, but we occasionally observed small magnetic flux patches streaming out. The observations indicate that the annular zone is different from sunspot moat flow region and that it represents the structure in the chromosphere. We conclude that the annular zone reflects the formation of a magnetic canopy overlying the region surrounding the umbra at the chromospheric level, much before the formation of the penumbra at the photospheric level. The magnetic field structure in the chromosphere needs to be considered in the formation process of the penumbrae.
The tropical wisdom that when it is hot and dense we can expect rain might also apply to the Sun. Indeed, observations and numerical simulations have shown that strong heating at footpoints of loops, as is the case for active regions, puts their coro nae out of thermal equilibrium, which can lead to a phenomenon known as catastrophic cooling. Following local pressure loss in the corona, hot plasma locally condenses in these loops and dramatically cools down to chromospheric temperatures. These blobs become bright in H-alpha and Ca II H in time scales of minutes, and their dynamics seem to be subject more to internal pressure changes in the loop rather than to gravity. They thus become trackers of the magnetic field, which results in the spectacular coronal rain that is observed falling down coronal loops. In this work we report on high resolution observations of coronal rain with the Solar Optical Telescope (SOT) on Hinode and CRISP at the Swedish Solar Telescope (SST). A statistical study is performed in which properties such as velocities and accelerations of coronal rain are derived. We show how this phenomenon can constitute a diagnostic tool for the internal physical conditions inside loops. Furthermore, we analyze transverse oscillations of strand-like condensations composing coronal rain falling in a loop, and discuss the possible nature of the wave. This points to the important role that coronal rain can play in the fields of coronal heating and coronal seismology.
We present the first simultaneous observations of chromospheric anemone jets in solar active regions with Hinode SOT Ca II H broadband filetergram and Ca II K spetroheliogram on the Domeless Solar Telescope (DST) at Hida Observatory. During the coord inated observation, 9 chromospheric anemone jets were simultaneously observed with the two instruments. These observations revealed three important features, i.e.: (1) the jets are generated in the lower chromosphere, (2) the length and lifetime of the jets are 0.4-5 Mm and 40-320 sec, (3) the apparent velocity of the jets with Hinode SOT are 3-24 km/s, while Ca II K3 component at the jets show blueshifts (in 5 events) in the range of 2- 6 km/s. The chromospheric anemone jets are associated with mixed polarity regions which are either small emerging flux regions or moving magnetic features. It is found that the Ca II K line often show red or blue asymmetry in K2/K1 component: the footpoint of the jets associated with emerging flux regions often show redshift (2-16 km/s), while the one with moving magnetic features show blueshift (around 5 km/s). Detailed analysis of magnetic evolution of the jet foaming regions revealed that the reconnection rate (or canceling rate) of the total magnetic flux at the footpoint of the jets are of order of 10^{16} Mx/s, and the resulting magnetic energy release rate (1.1-10) x 10^{24} erg/s, with the total energy release (1-13) x 10^{26} erg for the duration of the magnetic cancellations, 130s. These are comparable to the estimated total energy, 10^{26} erg, in a single chromospheric anemone jet. An observation-based physical model of the jet is presented. The relation between chromospheric anemone jets and Ellerman bombs is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا