ترغب بنشر مسار تعليمي؟ اضغط هنا

The standard model of spin injection

40   0   0.0 ( 0 )
 نشر من قبل Jaroslav Fabian
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

1 Introduction 2 Simple model of spin injection 3 Spin-polarized transport: concepts and definitions 4 The standard model of spin injection: F/N junction 5 Nonequilibrium resistance and spin bottleneck 6 Transparent and tunnel contacts, conductivity mismatch 7 Silsbee-Johnson spin-charge coupling 8 Spin injection in F/N/F junctions 9 Nonlocal spin-injection geometry: Johnson-Silsbee spin injection experiment

قيم البحث

اقرأ أيضاً

114 - L. Lombez , P. Renucci , P. Gallo 2006
We have demonstrated by electroluminescence the injection of spin polarized electrons through Co/Al2O3/GaAs tunnel barrier into p-doped InAs/GaAs quantum dots embedded in a PIN GaAs light emitting diode. The spin relaxation processes in the p-doped q uantum dots are characterized independently by optical measurements (time and polarization resolved photoluminescence). The measured electroluminescence circular polarization is about 15 % at low temperature in a 2T magnetic field, leading to an estimation of the electrical spin injection yield of 35%. Moreover, this electroluminescence circular polarization is stable up to 70 K.
We have investigated spin accumulation in Ni/Au/Ni single-electron transistors assembled by atomic force microscopy. The fabrication technique is unique in that unconventional hybrid devices can be realized with unprecedented control, including real- time tunable tunnel resistances. A grid of Au discs, 30 nm in diameter and 30 nm thick, is prepared on a SiO2 surface by conventional e-beam writing. Subsequently, 30 nm thick ferromagnetic Ni source, drain and side-gate electrodes are formed in similar process steps. The width and length of the source and drain electrodes were different to exhibit different coercive switching fields. Tunnel barriers of NiO are realized by sequential Ar and O2 plasma treatment. Using an atomic force microscope with specially designed software, a single non-magnetic Au nanodisc is positioned into the 25 nm gap between the source and drain electrodes. The resistance of the device is monitored in real-time while the Au disc is manipulated step-by-step with Angstrom-level precision. Transport measurements in magnetic field at 1.7 K reveal no clear spin accumulation in the device, which can be attributed to fast spin relaxation in the Au disc. From numerical simulations using the rate-equation approach of orthodox Coulomb blockade theory, we can put an upper bound of a few ns on the spin-relaxation time for electrons in the Au disc. To confirm the magnetic switching characteristics and spin injection efficiency of the Ni electrodes, we fabricated a test structure consisting of a Ni/NiO/Ni magnetic tunnel junction with asymmetric dimensions of the electrodes similar to those of the SETs. Magnetoresistance measurements on the test device exhibited clear signs of magnetic reversal and a maximum TMR of 10%, from which we deduced a spin-polarization of about 22% in the Ni electrodes.
Single crystal magnetic studies combined with a theoretical analysis show that cancellation of the magnetic moments in the trinuclear Dy3+ cluster [Dy3(OH)2L3Cl(H2O)5]Cl3, resulting in a non-magnetic ground doublet, originates from the non-collineari ty of the single ion easy axes of magnetization of the Dy3+ ions that lie in the plane of the triangle at 120 (deg.) one from each other. This gives rise to a peculiar chiral nature of the ground non-magnetic doublet and to slow relaxation of the magnetization with abrupt accelerations at the crossings of the discrete energy levels.
We propose a mechanism whereby spin supercurrents can be manipulated in superconductor/ferromagnet proximity systems via nonequilibrium spin injection. We find that if a spin supercurrent exists in equilibrium, a nonequilibrium spin accumulation will exert a torque on the spins transported by this current. This interaction causes a new spin supercurrent contribution to manifest out of equilibrium, which is proportional to and polarized perpendicularly to both the injected spins and equilibrium spin current. This is interesting for several reasons: as a fundamental physical effect; due to possible applications as a way to control spin supercurrents; and timeliness in light of recent experiments on spin injection in proximitized superconductors.
69 - Satoshi Okamoto 2016
We investigate the spin injection and the spin transport in paramagnetic insulators described by simple Heisenberg interactions using auxiliary particle methods. Some of these methods allow access to both paramagnetic states above magnetic transition temperatures and magnetic states at low temperatures. It is predicted that the spin injection at an interface with a normal metal is rather insensitive to temperatures above the magnetic transition temperature. On the other hand below the transition temperature, it decreases monotonically and disappears at zero temperature. We also analyze the bulk spin conductance. It is shown that the conductance becomes zero at zero temperature as predicted by linear spin wave theory but increases with temperature and is maximized around the magnetic transition temperature. These findings suggest that the compromise between the two effects determines the optimal temperature for spintronics applications utilizing magnetic insulators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا