ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromagnetic and Hadron Calorimeters in the MIPP Experiment

136   0   0.0 ( 0 )
 نشر من قبل Turgun Nigmanov
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The purpose of the MIPP experiment is to study the inclusive production of photons, pions, kaons and nucleons in pi, K and p interactions on various targets using beams from the Main Injector at Fermilab. The function of the calorimeters is to measure the production of forward-going neutrons and photons. The electromagnetic calorimeter consist of 10 lead plates interspersed with proportional chambers. It was followed by the hadron calorimeter with 64 steel plates interspersed with scintillator. The data presented were collected with a variety of targets and beam momenta from 5 GeV/c to 120 GeV/c. The energy calibration of both calorimeters with electrons, pions, kaons, and protons is discussed. The resolution for electrons was found to be 0.27/sqrt(E), and for hadrons the resolution was 0.554/sqrt(E) with a constant term of 2.6%. The performance of the calorimeters was tested on a neutron sample.



قيم البحث

اقرأ أيضاً

453 - M.Pari , G. Ballerini , A. Berra 2018
We summarize in this paper the detector R&D performed in the framework of the ERC ENUBET Project. We discuss in particular the latest results on longitudinally segmented shashlik calorimeters and the first HEP application of polysiloxane-based scintillators.
Three new sub-detectors have been installed on May 2013 in the KLOE apparatus of Laboratori Nazionali di Frascati of INFN. Photon detection is improved by means of a small crystal calorimeter, named CCALT, in the very forward direction and of a tungs ten-scintillating tile sampling device, named QCALT, instrumenting the low-beta quadrupoles of the accelerator. During the first DA$phi$NE operations, some preliminary runs, both with and without collisions, have been acquired allowing the commissioning of new subdetectors. In this paper, we report a brief description of QCALT and CCALT and a summary of the commissioning phase.
Silicon PhotoMultipliers (SiPM) are an excellent choice for the scintillator light readout at hadron calorimeters due to their insensitivity to magnetic fields, low operating voltages, low cost, compactness and mechanical endurance. They are already successfully utilized in Projectile Spectator Detector (PSD) of NA61 at CERN, and will be utilized soon in PSD of CBM at FAIR and Forward Hadron CALorimeters (FHCAL) of BM@N at NICA heavy-ion collision experiments. The main issue of SiPM application is their degradation due to high neutron fluence that can reach up to 2E11 neq/cm2 per year of the experiment operation. Multiple irradiation tests of SiPMs produced by Ketek, Zecotek, Hamamatsu and Sensl manufacturers were conducted at the cyclotron of NPI Rez with a broad neutron spectrum and total fluences in the wide range of 5E10 - 6E12 neq/cm2. Detailed characterisation of all SiPMs was performed based on dependencies of dark current on voltage, capacitance on voltage and frequency, and response to LED light on voltage. SiPMs breakdown voltage, quenching resistance, pixel capacitance, gain and signal to noise ratio were extracted from these measurements. Those parameters dependence on neutron fluence and their variability are discussed. Performance of the PSD calorimeter module equipped with irradiated SiPMs in CERN during the beam scan with 2 - 80 GeV/c protons is briefly overviewed.
The Muon $g-2$ experiment, E989, is currently taking data at Fermilab with the aim of reducing the experimental error on the muon anomaly by a factor of four and possibly clarifying the current discrepancy with the theoretical prediction. A central c omponent of this four-fold improvement in precision is the laser calibration system of the calorimeters, which has to monitor the gain variations of the photo-sensors with a 0.04% precision on the short-term ($sim 1,$ms). This is about one order of magnitude better than what has ever been achieved for the calibration of a particle physics calorimeter. The system is designed to monitor also long-term gain variations, mostly due to temperature effects, with a precision below the per mille level. This article reviews the design, the implementation and the performance of the Muon $g-2$ laser calibration system, showing how the experimental requirements have been met.
The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers design considerations, relevant construction information, and comparisons of simulated and exp erimental results are included. The energy resolution of the HMS and SOS calorimeters is better than $sigma/E sim 6%/sqrt E $, and pion/electron ($pi/e$) separation of about 100:1 has been achieved in energy range 1 -- 5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined $pi^-$ suppression factors by close to a factor of two. For the SHMS spectrometer presently under construction details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial (preshower) calorimeter layer with the total energy deposited in the calorimeter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا