ترغب بنشر مسار تعليمي؟ اضغط هنا

String Gas Shells, their Dual Radiation and Hedgehog Signature Control

65   0   0.0 ( 0 )
 نشر من قبل Guendelman Eduardo I
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E.I. Guendelman




اسأل ChatGPT حول البحث

We search for spherically symmetric, stationary solutions with a string gas shell as a source. The requirement of a uniform newtonian potential, or constancy of the 00 component of the metric, implies the existence of a dual radiation, which we argue can be interpreted as representing the virtual quantum fluctuations that stabilize the shell. A string hedgehog can be introduced also into the solution. For zero or small hedgehog strength the string gas shell is of a regular nature, while the dual radiation is of a spacelike nature. For higher hedgehog strengths however the radiation materializes and becomes timelike while the string gas shell becomes space like. The significance of these solutions for the quantum theory is discussed.

قيم البحث

اقرأ أيضاً

When a potential for a scalar field has two local minima there arise spherical shell-type solutions of the classical field equations due to gravitational attraction. We establish such solutions numerically in a space which is asymptotically de Sitter . It generically arises when the energy scale characterizing the scalar field potential is much less than the Planck scale. It is shown that the mirror image of the shell appears in the other half of the Penrose diagram. The configuration is smooth everywhere with no physical singularity.
We present compact Q-balls in an (Anti-)de Sitter background in D dimensions, obtained with a V-shaped potential of the scalar field. Beyond critical values of the cosmological constant compact Q-shells arise. By including the gravitational back-reac tion, we obtain boson stars and boson shells with (Anti-)de Sitter asymptotics. We analyze the physical properties of these solutions and determine their domain of existence. In four dimensions we address some astrophysical aspects.
In this review paper we investigate the connection between gravity and electromagnetism from Faraday to the present day. The particular focus is on the connection between gravitational and electromagnetic radiation. We discuss electromagnetic radiati on produced when a gravitational wave passes through a magnetic field. We then discuss the interaction of electromagnetic radiation with gravitational waves via Feynman diagrams of the process $graviton + graviton to photon + photon$. Finally we review recent work on the vacuum production of counterpart electromagnetic radiation by gravitational waves.
We make a rigorous study of classical field equations on a 2-dimensional signature changing spacetime using the techniques of operator theory. Boundary conditions at the surface of signature change are determined by forming self-adjoint extensions of the Schrodinger Hamiltonian. We show that the initial value problem for the Klein--Gordon equation on this spacetime is ill-posed in the sense that its solutions are unstable. Furthermore, if the initial data is smooth and compactly supported away from the surface of signature change, the solution has divergent $L^2$-norm after finite time.
We study the dynamics of a spherically symmetric thin shell of perfect fluid embedded in d-dimensional Anti-de Sitter space-time. In global coordinates, besides collapsing solutions, oscillating solutions are found where the shell bounces back and fo rth between two radii. The parameter space where these oscillating solutions exist is scanned in arbitrary number of dimensions. As expected AdS3 appears to be singled out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا