ﻻ يوجد ملخص باللغة العربية
In a recent paper, Amini et al. introduce a general framework to prove duality theorems between special decompositions and their dual combinatorial object. They thus unify all known ad-hoc proofs in one single theorem. While this unification process is definitely good, their main theorem remains quite technical and does not give a real insight of why some decompositions admit dual objects and why others do not. The goal of this paper is both to generalise a little this framework and to give an enlightening simple proof of its central theorem.
Motivated by recent computational models for redistricting and detection of gerrymandering, we study the following problem on graph partitions. Given a graph $G$ and an integer $kgeq 1$, a $k$-district map of $G$ is a partition of $V(G)$ into $k$ non
Motivated by applications in gerrymandering detection, we study a reconfiguration problem on connected partitions of a connected graph $G$. A partition of $V(G)$ is emph{connected} if every part induces a connected subgraph. In many applications, it
The question whether a partition $mathcal{P}$ and a hierarchy $mathcal{H}$ or a tree-like split system $mathfrak{S}$ are compatible naturally arises in a wide range of classification problems. In the setting of phylogenetic trees, one asks whether th
We introduce the notion of specular sets which are subsets of groups called here specular and which form a natural generalization of free groups. These sets are an abstract generalization of the natural codings of linear involutions. We prove several
Let $G$ be a graph(directed or undirected) having $k$ number of blocks. A $mathcal{B}$-partition of $G$ is a partition into $k$ vertex-disjoint subgraph $(hat{B_1},hat{B_1},hdots,hat{B_k})$ such that $hat{B}_i$ is induced subgraph of $B_i$ for $i=1,2