ﻻ يوجد ملخص باللغة العربية
In density functional theory (DFT), the exchange-correlation functional can be exactly expressed by the adiabatic connection integral. It has been noticed that as lambda goes to infinity, the lambda^(-1) term in the expansion of W(lambda) vanishes. We provide a simple but rigorous derivation to this exact condition in this work. We propose a simple parametric form for the integrand, satisfying this condition, and show that it is highly accurate for weakly-correlated two-electron systems.
Modern density functional theory (DFT) calculations employ the Kohn-Sham (KS) system of non-interacting electrons as a reference, with all complications buried in the exchange-correlation energy (Exc). The adiabatic connection formula gives an exact
An adiabatic-connection fluctuation-dissipation theorem approach based on a range separation of electron-electron interactions is proposed. It involves a rigorous combination of short-range density functional and long-range random phase approximation
SrTiO$_3$ exhibits superconductivity for carrier densities $10^{19}-10^{21}$ cm$^{-3}$. Across this range, the Fermi level traverses a number of vibrational modes in the system, making it ideal for studying dilute superconductivity. We use high-resol
We derive a connection between the intrinsic tribological properties and the electronic properties of a solid interface. In particular, we show that the adhesion and frictional forces are dictated by the electronic charge redistribution occurring due
We review the properties of neutron matter in the low-density regime. In particular, we revise its ground state energy and the superfluid neutron pairing gap, and analyze their evolution from the weak to the strong coupling regime. The calculations o