ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for Universal Four-Body States Tied to an Efimov Trimer

139   0   0.0 ( 0 )
 نشر من قبل Francesca Ferlaino
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the measurement of four-body recombination rate coefficients in an atomic gas. Our results obtained with an ultracold sample of cesium atoms at negative scattering lengths show a resonant enhancement of losses and provide strong evidence for the existence of a pair of four-body states, which is strictly connected to Efimov trimers via universal relations. Our findings confirm recent theoretical predictions and demonstrate the enrichment of the Efimov scenario when a fourth particle is added to the generic three-body problem.



قيم البحث

اقرأ أيضاً

Three interacting particles form a system which is well known for its complex physical behavior. A landmark theoretical result in few-body quantum physics is Efimovs prediction of a universal set of weakly bound trimer states appearing for three iden tical bosons with a resonant two-body interaction. Surprisingly, these states even exist in the absence of a corresponding two-body bound state and their precise nature is largely independent of the particular type of the two-body interaction potential. Efimovs scenario has attracted great interest in many areas of physics; an experimental test however has not been achieved. We report the observation of an Efimov resonance in an ultracold thermal gas of cesium atoms. The resonance occurs in the range of large negative two-body scattering lengths and arises from the coupling of three free atoms to an Efimov trimer. We observe its signature as a giant three-body recombination loss when the strength of the two-body interaction is varied near a Feshbach resonance. This resonance develops into a continuum resonance at non-zero collision energies, and we observe a shift of the resonance position as a function of temperature. We also report on a minimum in the recombination loss for positive scattering lengths, indicating destructive interference of decay pathways. Our results confirm central theoretical predictions of Efimov physics and represent a starting point from which to explore the universal properties of resonantly interacting few-body systems.
65 - D. Blume 2019
Small weakly-bound droplets determine a number of properties of ultracold Bose and Fermi gases. For example, Efimov trimers near the atom-atom-atom and atom-dimer thresholds lead to enhanced losses from bosonic clouds. Generalizations to four- and hi gher-body systems have also been considered. Moreover, Efimov trimers have been predicted to play a role in the Bose polaron with large boson-impurity scattering length. Motivated by these considerations, the present work provides a detailed theoretical analysis of weakly-bound $N$-body clusters consisting of $N-1$ identical bosons (denoted by B) of mass $m$ that interact with a single distinguishable impurity particle (denoted by X) of mass $M$. The system properties are analyzed as a function of the mass ratio $kappa$ (values from $kappa=1$ to $50$ are considered), where $kappa$ is equal to $m/M$, and the two-body $s$-wave scattering length $a_{text{BX}}$ between the bosons and the impurity. To reach the universal Efimov regime in which the size of the BBX trimer as well as those of larger clusters is much larger than the length scales of the underlying interaction model, three different approaches are considered: resonance states are determined in the absence of BB and BBX interactions, bound states are determined in the presence of repulsive three-body boson-boson-impurity interactions, and bound states are determined in the presence of repulsive two-body boson-boson interactions. The universal regime, in which the details of the underlying interaction model become irrelevant, is identified.
129 - T. Kraemer 2005
Systems of three interacting particles are notorious for their complex physical behavior. A landmark theoretical result in few-body quantum physics is Efimovs prediction of a universal set of bound trimer states appearing for three identical bosons w ith a resonant two-body interaction. Counterintuitively, these states even exist in the absence of a corresponding two-body bound state. Since the formulation of Efimovs problem in the context of nuclear physics 35 years ago, it has attracted great interest in many areas of physics. However, the observation of Efimov quantum states has remained an elusive goal. Here we report the observation of an Efimov resonance in an ultracold gas of cesium atoms. The resonance occurs in the range of large negative two-body scattering lengths, arising from the coupling of three free atoms to an Efimov trimer. Experimentally, we observe its signature as a giant three-body recombination loss when the strength of the two-body interaction is varied. We also detect a minimum in the recombination loss for positive scattering lengths, indicating destructive interference of decay pathways. Our results confirm central theoretical predictions of Efimov physics and represent a starting point with which to explore the universal properties of resonantly interacting few-body systems. While Feshbach resonances have provided the key to control quantum-mechanical interactions on the two-body level, Efimov resonances connect ultracold matter to the world of few-body quantum phenomena.
We study a one-dimensional quantum problem of two particles interacting with a third one via a scale-invariant subcritically attractive inverse square potential, which can be realized, for example, in a mixture of dipoles and charges confined to one dimension. We find that above a critical mass ratio, this version of the Calogero problem exhibits the generalized Efimov effect, the emergence of discrete scale invariance manifested by a geometric series of three-body bound states with an accumulation point at zero energy.
We demonstrate the emergence of universal Efimov physics for interacting photons in cold gases of Rydberg atoms. We consider the behavior of three photons injected into the gas in their propagating frame, where a paraxial approximation allows us to c onsider them as massive particles. In contrast to atoms and nuclei, the photons have a large anisotropy between their longitudinal mass, arising from dispersion, and their transverse mass, arising from diffraction. Nevertheless, we show that in suitably rescaled coordinates the effective interactions become dominated by s-wave scattering near threshold and, as a result, give rise to an Efimov effect near unitarity. We show that the three-body loss of these Efimov trimers can be strongly suppressed and determine conditions under which these states are observable in current experiments. These effects can be naturally extended to probe few-body universality beyond three bodies, as well as the role of Efimov physics in the non-equilbrium, many-body regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا