ﻻ يوجد ملخص باللغة العربية
We extend previous work on injectivity in chemical reaction networks to general interaction networks. Matrix- and graph-theoretic conditions for injectivity of these systems are presented. A particular signed, directed, labelled, bipartite multigraph, termed the ``DSR graph, is shown to be a useful representation of an interaction network when discussing questions of injectivity. A graph-theoretic condition, developed previously in the context of chemical reaction networks, is shown to be sufficient to guarantee injectivity for a large class of systems. The graph-theoretic condition is simple to state and often easy to check. Examples are presented to illustrate the wide applicability of the theory developed.
In this paper we discuss the question of how to decide when a general chemical reaction system is incapable of admitting multiple equilibria, regardless of parameter values such as reaction rate constants, and regardless of the type of chemical kinet
We describe combinatorial approaches to the question of whether families of real matrices admit pairs of nonreal eigenvalues passing through the imaginary axis. When the matrices arise as Jacobian matrices in the study of dynamical systems, these con
Delay mass-action systems provide a model of chemical kinetics when past states influence the current dynamics. In this work, we provide a graph-theoretic condition for delay stability, i.e., linear stability independent of both rate constants and de
We establish characteristic factors for natural classes of polynomial multiple ergodic averages in rings of integers and derive corresponding Khintchine-type recurrence theorems, extending results of Frantzikinakis and Kra and of Frantzikinakis about
The leading-order approximation to a Filippov system $f$ about a generic boundary equilibrium $x^*$ is a system $F$ that is affine one side of the boundary and constant on the other side. We prove $x^*$ is exponentially stable for $f$ if and only if