ترغب بنشر مسار تعليمي؟ اضغط هنا

Subcanonical coordinate rings are Gorenstein

130   0   0.0 ( 0 )
 نشر من قبل V. Hinich
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a classical result of Avramov-Golod we strengthen a recent result of Gorodentsev, Khoroshkin and Rudakov on syzygies of highest weight orbit closure.



قيم البحث

اقرأ أيضاً

A projectively normal Calabi-Yau threefold $X subseteq mathbb{P}^n$ has an ideal $I_X$ which is arithmetically Gorenstein, of Castelnuovo-Mumford regularity four. Such ideals have been intensively studied when $I_X$ is a complete intersection, as wel l as in the case where $X$ is codimension three. In the latter case, the Buchsbaum-Eisenbud theorem shows that $I_X$ is given by the Pfaffians of a skew-symmetric matrix. A number of recent papers study the situation when $I_X$ has codimension four. We prove there are 16 possible betti tables for an arithmetically Gorenstein ideal $I$ with $mathrm{codim}(I)=4=mathrm{reg}(I)$, and that exactly 8 of these occur for smooth irreducible nondegenerate threefolds. We investigate the situation in codimension five or more, obtaining examples of $X$ with $h^{p,q}(X)$ not among those appearing for $I_X$ of lower codimension or as complete intersections in toric Fano varieties. A key tool in our approach is the use of inverse systems to identify possible betti tables for $X$.
We give three proofs that valuation rings are derived splinters: a geometric proof using the absolute integral closure, a homological proof which reduces the problem to checking that valuation rings are splinters (which is done in the second authors PhD thesis and which we reprise here), and a proof by approximation which reduces the problem to Bhatts proof of the derived direct summand conjecture. The approximation property also shows that smooth algebras over valuation rings are splinters.
We analyze and present an effective solution to the minimal Gorenstein cover problem: given a local Artin k-algebra $A = k[[x 1 ,. .. x n ]]/I$, compute an Artin Gorenstein $k$-algebra $G = k[[x 1 ,. .. x n ]]/J$ such that $ell(G)--ell(A)$ is minimal . We approach the problem by using Macaulays inverse systems and a modification of the integration method for inverse systems to compute Gorenstein covers. We propose new characterizations of the minimal Gorenstein cover and present a new algorithm for the effective computation of the variety of all minimal Gorenstein covers of A for low Gorenstein colength. Experimentation illustrates the practical behavior of the method.
156 - Francois Couchot 2015
Let R be a ring (not necessarily commutative). A left R-module is said to be cotorsion if Ext 1 R (G, M) = 0 for any flat R-module G. It is well known that each pure-injective left R-module is cotorsion, but the converse does not hold: for instance, if R is left perfect but not left pure-semisimple then each left R-module is cotorsion but there exist non-pure-injective left modules. The aim of this paper is to describe the class C of commutative rings R for which each cotorsion R-module is pure-injective. It is easy to see that C contains the class of von Neumann regular rings and the one of pure-semisimple rings. We prove that C is strictly contained in the class of locally pure-semisimple rings. We state that a commutative ring R belongs to C if and only if R verifies one of the following conditions: (1) R is coherent and each pure-essential extension of R-modules is essential; (2) R is coherent and each RD-essential extension of R-modules is essential; (3) any R-module M is pure-injective if and only if Ext 1 R (R/A, M) = 0 for each pure ideal A of R (Baers criterion).
180 - Francois Couchot 2016
A definition of quasi-flat left module is proposed and it is shown that any left module which is either quasi-projective or flat is quasi-flat. A characterization of local commutative rings for which each ideal is quasi-flat (resp. quasi-projective) is given. It is also proven that each commutative ring R whose finitely generated ideals are quasi-flat is of $lambda$-dimension $le$ 3, and this dimension $le$ 2 if R is local. This extends a former result about the class of arithmetical rings. Moreover, if R has a unique minimal prime ideal then its finitely generated ideals are quasi-projective if they are quasi-flat. In [1] Abuhlail, Jarrar and Kabbaj studied the class of commutative fqp-rings (finitely generated ideals are quasi-projective). They proved that this class of rings strictly contains the one of arithmetical rings and is strictly contained in the one of Gaussian rings. It is also shown that the property for a commutative ring to be fqp is preserved by localization. It is known that a commutative ring R is arithmetical (resp. Gaussian) if and only if R M is arithmetical (resp. Gaussian) for each maximal ideal M of R. But an example given in [6] shows that a commutative ring which is a locally fqp-ring is not necessarily a fqp-ring. So, in this cited paper the class of fqf-rings is introduced. Each local commutative fqf-ring is a fqp-ring, and a commutative ring is fqf if and only if it is locally fqf. These fqf-rings are defined in [6] without a definition of quasi-flat modules. Here we propose a definition of these modules and another definition of fqf-ring which is equivalent to the one given in [6]. We also introduce the module property of self-flatness. Each quasi-flat module is self-flat but we do not know if the converse holds. On the other hand, each flat module is quasi-flat and any finitely generated module is quasi-flat if and only if it is flat modulo its annihilator. In Section 2 we give a complete characterization of local commutative rings for which each ideal is self-flat. These rings R are fqp and their nilradical N is the subset of zerodivisors of R. In the case where R is not a chain ring for which N = N 2 and R N is not coherent every ideal is flat modulo its annihilator. Then in Section 3 we deduce that any ideal of a chain ring (valuation ring) R is quasi-projective if and only if it is almost maximal and each zerodivisor is nilpotent. This complete the results obtained by Hermann in [11] on valuation domains. In Section 4 we show that each commutative fqf-ring is of $lambda$-dimension $le$ 3. This extends the result about arithmetical rings obtained in [4]. Moreover it is shown that this $lambda$-dimension is $le$ 2 in the local case. But an example of a local Gaussian ring R of $lambda$-dimension $ge$ 3 is given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا