ترغب بنشر مسار تعليمي؟ اضغط هنا

No Excess of RR Lyrae Stars in the Canis Major Overdensity

99   0   0.0 ( 0 )
 نشر من قبل Cecilia Mateu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our multi-epoch survey of ~20 sq. deg. of the Canis Major overdensity has detected only 10 RR Lyrae stars (RRLS). We show that this number is consistent with the number expected from the Galactic halo and thick disk populations alone, leaving no excess that can be attributed to the dwarf spheroidal (dSph) galaxy that some authors have proposed as the origin of the CMa overdensity. If this galaxy resembles the dSph satellites of the Milky Way and of M31 and has the putative Mv~-14.5, our survey should have detected several tens of RRLS. Even if Mv<-12, the expected excess is >10, which is not observed. Either the old stellar population of this galaxy has unique properties or, as others have argued before, the CMa overdensity is produced by the thin and thick disk and spiral arm populations of the Milky Way and not by a collision with a dSph satellite galaxy.

قيم البحث

اقرأ أيضاً

We use a combination of spatial distribution and radial velocity to search for halo sub-structures in a sample of 412 RR Lyrae stars (RRLS) that covers a $sim 525$ square degrees region of the Virgo Overdensity (VOD) and spans distances from the Sun from 4 to 75 kpc. With a friends-of-friends algorithm we identified six high significance groups of RRLS in phase space, which we associate mainly with the VOD and with the Sagittarius stream. Four other groups were also flagged as less significant overdensities. Three high significance and 3 lower significance groups have distances between $sim 10$ and 20 kpc, which places them with the distance range attributed by others to the VOD. The largest of these is the Virgo Stellar Stream (VSS) at 19 kpc, which has 18 RRLS, a factor of 2 increase over the number known previously. While these VOD groups are distinct according to our selection cirteria, their overlap in position and distance, and, in a few cases, similarity in radial velocity are suggestive that they may not all stem separate accretion events. Even so, the VOD appears to be caused by more than one overdensity. The Sgr stream is a very obvious feature in the background of the VOD at a mean distance of 44 kpc. Two additional high significant groups were detected at distances $>40$ kpc. Their radial velocities and locations differ from the expected path of the Sgr debris in this part of the sky, and they are likely to be remnants of other accretion events.
We map the large-scale sub-structure in the Galactic stellar halo using accurate 3D positions of ~14,000 RR Lyrae reported by the Catalina Sky Survey. In the heliocentric distance range of 10-25 kpc, in the region of the sky approximately bounded by 30{deg} < l < 55{deg} and -45{deg} < b < -25{deg}, there appears to be a strong excess of RRab stars. This overdensity, peaking at 18 kpc, is most likely associated with the so-called Hercules-Aquila Cloud, previously detected using Main Sequence tracers at similar distances in the Sloan Digital Sky Survey data. Our analysis of the period-amplitude distribution of RR Lyrae in this region indicates that the HAC is dominated by the Oosterhoff I type population. By comparing the measured RR Lyrae number density to models of a smooth stellar halo, we estimate the significance of the observed excess and provide an updated estimate of the total luminosity of the Clouds progenitor.
We combine the Siding Spring Survey of RR Lyrae stars with the Southern Proper Motion Catalog 4, in order to detect and kinematically characterize overdensities in the inner halo of the Milky Way. We identify one such overdensity above the Galactic p lane, in quadrant 4 of the Galaxy. The overdensity extends at least 20 degrees in longitude, has an average heliocentric distance of 8 kpc with a depth of 4 kpc, and is confined within 4 kpc of the Galactic plane. Its metallicity distribution is distinct from that of the field population having a peak at -1.3 and a pronounced tail to -2.0. Proper motions indicate a net vertical motion away from the plane, and a low orbital angular momentum. Qualitatively, these orbit properties suggest a possible association with omega Centauris parent satellite. However, comparison to a specific omega Cen N-body disruption model does not give a good match with observations. Line-of-sight velocities, and more extensive N-body modelling will help clarify the nature of this overdensity.
We report the detection of spatially distinct stellar density features near the apocenters of the Sagittarius (Sgr) streams main leading and trailing arm. These features are clearly visible in a high-fidelity stellar halo map that is based on RR Lyra e from Pan-STARRS1: there is a plume of stars 10 kpc beyond the apocenter of the leading arm, and there is a spur extending to 130 kpc, almost 30 kpc beyond the previously detected apocenter of the trailing arm. Such apocenter substructure is qualitatively expected in any Sgr stream model, as stars stripped from the progenitor at different pericenter passages become spatially separated there. The morphology of these new Sgr stream substructures could provide much-needed new clues and constraints for modeling the Sgr system, including the level of dynamical friction that Sgr has experienced. We also report the discovery of a new, presumably unrelated halo substructure at 80 kpc from the Sun and $10^circ$ from the Sgr orbital plane, which we dub the Outer Virgo Overdensity.
Stellar tidal streams provide an opportunity to study the motion and structure of the disrupting galaxy as well as the gravitational potential of its host. Streams around the Milky Way are especially promising as phase space positions of individual s tars will be measured by ongoing or upcoming surveys. Nevertheless, it remains a challenge to accurately assess distances to stars farther than 10 kpc from the Sun, where we have the poorest knowledge of the Galaxys mass distribution. To address this we present observations of 32 candidate RR Lyrae stars in the Orphan tidal stream taken as part of the Spitzer Merger History and Shape of the Galactic Halo (SMHASH) program. The extremely tight correlation between the periods, luminosities, and metallicities of RR Lyrae variable stars in the Spitzer IRAC $mathrm{3.6 mu m}$ band allows the determination of precise distances to individual stars; the median statistical distance uncertainty to each RR Lyrae star is $2.5%$. By fitting orbits in an example potential we obtain an upper limit on the mass of the Milky Way interior to 60 kpc of $mathrm{5.6_{-1.1}^{+1.2}times 10^{11} M_odot}$, bringing estimates based on the Orphan Stream in line with those using other tracers. The SMHASH data also resolve the stream in line--of--sight depth, allowing a new perspective on the internal structure of the disrupted dwarf galaxy. Comparing with N--body models we find that the progenitor had an initial dark halo mass of approximately $mathrm{3.2 times 10^{9} M_odot}$, placing the Orphan Streams progenitor amongst the classical dwarf spheroidals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا