ﻻ يوجد ملخص باللغة العربية
We study the behaviors of galactic disks in triaxial halos both numerically and analytically to see if warps can be excited and sustained in triaxial potentials. We consider the following two scenarios: 1) galactic disks that are initially tilted relative to the equatorial plane of the halo (for a pedagogical purpose), and 2) tilted infall of dark matter relative to the equatorial plane of the disk and the halo. With numerical simulations of 100,000 disk particles in a fixed halo potential, we find that in triaxial halos, warps can be excited and sustained just as in spherical or axisymmetric halos but they show some oscillatory behaviors and even can be transformed to a polar-ring system if the halo has a prolate-like triaxiality. The non-axisymmetric component of the halo causes the disk to nutate, and the differential nutation between the inner and outer parts of the disk generally makes the magnitude of the warp slightly diminish and fluctuate. We also find that warps are relatively weaker in oblate and oblate-like triaxial halos, and since these halos are the halo configurations of disk galaxies inferred by cosmological simulations, our results are consistent with the fact that most of the observed warps are quite weak. We derive approximate formulae for the torques exerted on the disk by the triaxial halo and the dark matter torus, and with these formulae we successfully describe the behaviors of the disks in our simulations. The techniques used in deriving these formulae could be applied for realistic halos with more complex structures.
Using spectral methods, we analyse the orbital structure of prolate/triaxial dark matter (DM) halos in N-body simulations to understand the processes that drive the evolution of shapes of DM halos and elliptical galaxies in which central masses are g
We analyze warps in the nearby edge-on spiral galaxies observed in the {em Spitzer/IRAC} 4.5 micron band. In our sample of 24 galaxies we find evidence of warp in 14 galaxies. We estimate the observed onset radii for the warps in a subsample of 10 ga
The velocity anisotropy parameter, beta, is a measure of the kinematic state of orbits in the stellar halo which holds promise for constraining the merger history of the Milky Way (MW). We determine global trends for beta as a function of radius from
We use N-body hydrodynamical simulations to study the structure of disks in triaxial potentials resembling CDM halos. Our analysis focuses on the accuracy of the dark mass distribution inferred from rotation curves derived from simulated long-slit sp
We have analyzed high resolution N-body simulations of dark matter halos, focusing specifically on the evolution of angular momentum. We find that not only is individual particle angular momentum not conserved, but the angular momentum of radial shel