ترغب بنشر مسار تعليمي؟ اضغط هنا

ARGO-YBJ constraints on very high energy emission from GRBs

131   0   0.0 ( 0 )
 نشر من قبل Songzhan Chen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ARGO-YBJ (Astrophysical Radiation Ground-based Observatory at YangBaJing) experiment is designed for very high energy $gamma$-astronomy and cosmic ray researches. Due to the full coverage of a large area ($5600 m^2$) with resistive plate chambers at a very high altitude (4300 m a.s.l.), the ARGO-YBJ detector is used to search for transient phenomena, such as Gamma-ray bursts (GRBs). Because the ARGO-YBJ detector has a large field of view ($sim$2 sr) and is operated with a high duty cycle ($>$90%), it is well suited for GRB surveying and can be operated in searches for high energy GRBs following alarms set by satellite-borne observations at lower energies. In this paper, the sensitivity of the ARGO-YBJ detector for GRB detection is estimated. Upper limits to fluence with 99% confidence level for 26 GRBs inside the field of view from June 2006 to January 2009 are set in the two energy ranges 10$-$100 GeV and 10 GeV$-$1 TeV.

قيم البحث

اقرأ أيضاً

406 - E. Aliu , T. Aune , A. Barnacka 2014
Prompt emission from the very fluent and nearby (z=0.34) gamma-ray burst GRB 130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, i t is exceptional due to the extremely long-lived high-energy (100 MeV to 100 GeV) gamma-ray emission, which was detected by the Large Area Telescope on the Fermi Gamma-ray Space Telescope for ~70 ks after the initial burst. The persistent, hard-spectrum, high-energy emission suggests that the highest-energy gamma rays may have been produced via synchrotron self-Compton processes though there is also evidence that the high-energy emission may instead be an extension of the synchrotron spectrum. VERITAS, a ground-based imaging atmospheric Cherenkov telescope array, began follow-up observations of GRB 130427A ~71 ks (~20 hr) after the onset of the burst. The GRB was not detected with VERITAS; however, the high elevation of the observations, coupled with the low redshift of the GRB, make VERITAS a very sensitive probe of the emission from GRB 130427A for E > 100 GeV. The non-detection and consequent upper limit derived place constraints on the synchrotron self-Compton model of high-energy gamma-ray emission from this burst.
ARGO-YBJ is a full coverage air shower detector under construction at the YangBaJing Laboratory (4300 m a.s.l., Tibet, P.R. of China). Its main goals are gamma-ray astronomy and cosmic ray studies. In this paper we present the capabilities of ARGO-YB J in detecting the emission from Gamma Ray Bursts (GRBs) at energies E>10 GeV.
The ARGO-YBJ experiment has been in stable data taking for 5 years at the YangBaJing Cosmic Ray Observatory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm^2). With a duty-cycle greater than 86% the detector collected about 5 X 10^{11} events in a wide e nergy range, from few hundreds GeV up to the PeV. A number of open problems in cosmic ray physics has been faced exploiting different analyses. In this paper we summarize the latest results in gamma-ray astronomy and in cosmic ray physics
The ARGO-YBJ experiment has been in stable data taking for 5 years at the YangBaJing Cosmic Ray Observatory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm$^2$). With a duty-cycle greater than 86% the detector collected about 5$times $10$^{11}$ events in a wide energy range, from few hundreds GeV up to about 10 PeV. A number of open problems in cosmic ray physics has been faced exploiting different analyses. In this paper we summarize the latest results in cosmic ray physics and in gamma-ray astronomy.
Gamma-ray bursts (GRBs) are among the most luminous sources in the universe. The nature of their emission at TeV energies is one of the most relevant open issues related to these events. The temporal and spectral features inferred from the early and late emissions usually known as prompt and afterglow, respectively, can be interpreted within the context of the fireball model. The synchrotron self-Compton process is expected during the afterglow phase. We explain how the theoretical SSC light curves can be compared with hypothetical upper limit located at z=0.3. We show the allowed parameter space of the microphysical parameters and density of the circumburst medium. The most restrictive results are obtained when the SSC process lies in the fast cooling regime
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا