ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrinoless double beta decays of the top quark and other effects of heavy Majorana neutrinos

172   0   0.0 ( 0 )
 نشر من قبل Gad Eilam
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Gad Eilam




اسأل ChatGPT حول البحث

We discuss the rare decay of the top quark into a pair of same charge leptons (with identical or different flavors), a b quark and a (real or virtual) W-. The above process proceeds only if the exchanged neutrino N is of the Majorana type. This decay is the neutrinoless double b decay of the top. We find measurable values for its rate at the LHC with luminosity of 100 inverse fb. Furthermore, we consider an interaction of charged Higgs bosons with N which leads to lepton number violating processes such as pp to l+ N to l+ l+ H-, exhibiting spectacular events of the type: l+ l+ b b(bar) + 2 jets.



قيم البحث

اقرأ أيضاً

70 - S. Pascoli , S. T. Petcov 2001
If the present or upcoming searches for neutrinoless double beta decay give a positive result, the Majorana nature of massive neutrinos will be established. From the determination of the value of the effective Majorana mass parameter |<m>|, it woul d be possible to obtain information on the type of neutrino mass spectrum. Assuming 3-neutrino mixing and massive Majorana neutrinos, we discuss the information a measurement of, or an upper bound on, |<m>| can provide on the value of the lightest neutrino mass m1. With additional data on the neutrino masses obtained in tritium beta decay experiments, it might be possible to establish whether the CP-symmetry is violated in the lepton sector. This would require very high precision measurements. If CP-invariance holds, the allowed patterns of the relative CP-parities of the massive Majorana neutrinos would be determined.
The Schechter-Valle theorem states that a positive observation of neutrinoless double-beta ($0 u beta beta$) decays implies a finite Majorana mass term for neutrinos when any unlikely fine-tuning or cancellation is absent. In this note, we reexamine the quantitative impact of the Schechter-Valle theorem, and find that current experimental lower limits on the half-lives of $0 u beta beta$-decaying nuclei have placed a restrictive upper bound on the Majorana neutrino mass $|delta m^{ee}_ u| < 7.43 times 10^{-29}~{rm eV}$ radiatively generated at the four-loop level. Furthermore, we generalize this quantitative analysis of $0 u beta beta$ decays to that of the lepton-number-violating (LNV) meson decays $M^- to {M^prime}^+ + ell^-_alpha + ell^-_beta$ (for $alpha$, $beta$ = $e$ or $mu$). Given the present upper limits on these rare LNV decays, we have derived the loop-induced Majorana neutrino masses $|delta m^{ee}_ u| < 9.7 times 10^{-18}~{rm eV}$, $|delta m^{emu}_ u| < 1.6 times 10^{-15}~{rm eV}$ and $|delta m^{mu mu}_ u| < 1.0 times 10^{-12}~{rm eV}$ from $K^- to pi^+ + e^- + e^-$, $K^- to pi^+ + e^- + mu^-$ and $K^- to pi^+ + mu^- + mu^-$, respectively. A partial list of radiative neutrino masses from the LNV decays of $D$, $D_s^{}$ and $B$ mesons is also given.
57 - Giovanni Benato 2015
The probability distribution for the effective Majorana mass as a function of the lightest neutrino mass in the standard three neutrino scheme is computed via a random sampling from the distributions of the involved mixing angles and squared mass dif fences. A flat distribution in the [0,2pi] range for the Majorana phases is assumed, and the dependence of small values of the effective mass on the Majorana phases is highlighted. The study is then extended with the addition of the cosmological bound on the sum of the neutrino masses. Finally, the prospects for neutrinoless double beta decay search with 76Ge, 130Te and 136Xe are discussed, as well as those for the measurement of the electron neutrino mass.
116 - O. Panella 1997
We study in detail the contribution of heavy composite Majorana neutrinos to neutrino-less double beta decay. Our analysis confirms the result of a previous estimate by two of the authors. Excited neutrinos couple to the electroweak gauge bosons thro ugh a magnetic type effective Lagrangian. The relevant nuclear matrix element is related to matrix elements available in the literature and current bounds on the half-life of neutrino-less double beta decay are converted into bounds on the compositeness scale and/or the heavy neutrino mass. Our bounds are of the same order of magnitude as those available from accelerator experiments.
We study possible contribution of the Majorana neutrino mass eigenstate $ u_h$ dominated by a sterile neutrino component to neutrinoless double beta ($0 ubetabeta$) decay. From the current experimental lower bound on the $0 ubetabeta$-decay half-life of $^{76}$Ge we derive stringent constraints on the $ u_h- u_e$ mixing in a wide region of the values of $ u_h$ mass. We discuss cosmological and astrophysical status of $ u_h$ in this mass region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا