ﻻ يوجد ملخص باللغة العربية
The antiferromagnetic molecular wheel Fe18 of eighteen exchange-coupled Fe(III) ions has been studied by measurements of the magnetic torque, the magnetization, and the inelastic neutron scattering spectra. The combined data show that the low-temperature magnetism of Fe18 is very accurately described by the Neel-vector tunneling (NVT) scenario, as unfolded by semiclassical theory. In addition, the magnetic torque as a function of applied field exhibits oscillations that reflect the oscillations in the NVT tunnel splitting with field due to quantum phase interference.
The magnetic torque of the antiferromagnetic molecular wheel CsFe8 was studied down to 50 mK and in fields up to 28 T. Below ca. 0.5 K phase transitions were observed at the field-induced level-crossings (LCs). Intermolecular magnetic interactions ar
Coherent electronic transport through individual molecules is crucially sensitive to quantum interference. Using exact diagonalization techniques, we investigate the zero-bias and zero-temperature conductance through $pi$-conjugated annulene molecule
The tunnel splitting in biaxial antiferromagnetic particles is studied with a magnetic field applied along the hard anisotropy axis. We observe the oscillation of tunnel splitting as a function of the magnetic field due to the quantum phase interfere
We study the Kitaev-Heisenberg-$Gamma$ model with antiferromagnetic Kitaev exchanges in the strong anisotropic (toric code) limit to understand the phases and the intervening phase transitions between the gapped $Z_2$ quantum spin liquid and the spin
The Shastry-Sutherland model, which consists of a set of spin 1/2 dimers on a 2-dimensional square lattice, is simple and soluble, but captures a central theme of condensed matter physics by sitting precariously on the quantum edge between isolated,