ترغب بنشر مسار تعليمي؟ اضغط هنا

A solvable model for scattering on a junction and a modified analytic perturbation procedure

285   0   0.0 ( 0 )
 نشر من قبل Boris Pavlov
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Pavlov




اسأل ChatGPT حول البحث

We consider a one-body spin-less electron spectral problem for a resonance scattering system constructed of a quantum well weakly connected to a noncompact exterior reservoir, where the electron is free. The simplest kind of the resonance scattering system is a quantum network, with the reservoir composed of few disjoint cylindrical quantum wires, and the Schr{o}dinger equation on the network, with the real bounded potential on the wells and constant potential on the wires. We propose a Dirichlet-to-Neumann - based analysis to reveal the resonance nature of conductance across the star-shaped element of the network (a junction), derive an approximate formula for the scattering matrix of the junction, construct a fitted zero-range solvable model of the junction and interpret a phenomenological parameter arising in Datta-Das Sarma boundary condition, see {cite{DattaAPL}, for T-junctions. We also propose using of the fitted zero-range solvable model as the first step in a modified analytic perturbation procedure of calculation of the corresponding scattering matrix.



قيم البحث

اقرأ أيضاً

This work analyzes the effects of cubic nonlinearities on certain resonant scattering anomalies associated with the dissolution of an embedded eigenvalue of a linear scattering system. These sharp peak-dip anomalies in the frequency domain are often called Fano resonances. We study a simple model that incorporates the essential features of this kind of resonance. It features a linear scatterer attached to a transmission line with a point-mass defect and coupled to a nonlinear oscillator. We prove two power laws in the small coupling <gamma> to 0 and small nonlinearity <mu> to 0 regime. The asymptotic relation <mu> ~ C<gamma>^4 characterizes the emergence of a small frequency interval of triple harmonic solutions near the resonant frequency of the oscillator. As the nonlinearity grows or the coupling diminishes, this interval widens and, at the relation <mu> ~ C<gamma>^2, merges with another evolving frequency interval of triple harmonic solutions that extends to infinity. Our model allows rigorous computation of stability in the small <mu> and <gamma> limit. In the regime of triple harmonic solutions, those with largest and smallest response of the oscillator are linearly stable and the solution with intermediate response is unstable.
The scattering of quasiperiodic waves for a two-dimensional Helmholtz equation with a constant refractive index perturbed by a function which is periodic in one direction and of finite support in the other is considered. The scattering problem is uni quely solvable for almost all frequencies and formulas of Breit-Wigner and Fano type for the reflection and transmission coefficients are obtained in a neighborhood of the resonance (a pole of the reflection coefficient). We indicate also the values of the parameters involved which provide total transmission and reflection. For some exceptional frequencies and perturbations (when the imaginary part of the resonance vanishes) the scattering problem is not uniquely solvable and in the latter case there exist embedded Rayleigh-Bloch modes whose frequencies are explicitly calculated in terms of infinite convergent series in powers of the small parameter characterizing the magnitude of the perturbation.
103 - L. Petrova , B. Pavlov 2008
We suggest a method of fitting of a zero-range model of a tectonic plate under a boundary stress on the basis of comparison of the theoretical formulae for the corresponding eigenfunctions/eigenvalues with the results extraction under monitoring, in the remote zone, of non-random (regular) oscillations of the Earth with periods 0.2-6 hours, on the background seismic process, in case of low seismic activity. Observations of changes of the characteristics of the oscillations (frequency, amplitude and polarization) in course of time, together with the theoretical analysis of the fitted model, would enable us to localize the stressed zone on the boundary of the plate and estimate the risk of a powerful earthquake at the zone.
In a previous paper [{it J. Phys. A: Math. Theor.} {bf 40} (2007) 11105], we constructed a class of coherent states for a polynomially deformed $su(2)$ algebra. In this paper, we first prepare the discrete representations of the nonlinearly deformed $su(1,1)$ algebra. Then we extend the previous procedure to construct a discrete class of coherent states for a polynomial su(1,1) algebra which contains the Barut-Girardello set and the Perelomov set of the SU(1,1) coherent states as special cases. We also construct coherent states for the cubic algebra related to the conditionally solvable radial oscillator problem.
We discuss a basis set developed to calculate perturbation coefficients in an expansion of the general N-body problem. This basis has two advantages. First, the basis is complete order-by-order for the perturbation series. Second, the number of indep endent basis tensors spanning the space for a given order does not scale with N, the number of particles, despite the generality of the problem. At first order, the number of basis tensors is 23 for all N although the problem at first order scales as N^6. The perturbation series is expanded in inverse powers of the spatial dimension. This results in a maximally symmetric configuration at lowest order which has a point group isomorphic with the symmetric group, S_N. The resulting perturbation series is order-by-order invariant under the N! operations of the S_N point group which is responsible for the slower than exponential growth of the basis. In this paper, we perform the first test of this formalism including the completeness of the basis through first order by comparing to an exactly solvable fully-interacting problem of N particles with a two-body harmonic interaction potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا