ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy loss in a strongly coupled thermal medium and the gauge-string duality

70   0   0.0 ( 0 )
 نشر من قبل Silviu Pufu
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We review methods developed in the gauge-string duality to treat energy loss by energetic probes of a strongly coupled thermal medium. After introducing the black hole description of the thermal medium, we discuss the trailing string behind a heavy quark and the drag force that it implies. We then explain how to solve the linearized Einstein equations in the presence of the trailing string and extract from the solutions the energy density and the Poynting vector of the dual gauge theory. We summarize some efforts to compare these calculations to heavy ion phenomenology.

قيم البحث

اقرأ أيضاً

95 - Oleg Andreev 2020
The string breaking phenomenon in QCD can be studied using the gauge/string duality. In this approach, one can make estimates of some of the string breaking distances at non-zero temperature and baryon chemical potential. These point towards the enha ncement of baryon production in strong decays of heavy mesons in dense baryonic medium.
We study the energy loss of a rotating infinitely massive quark moving, at constant velocity, through an anisotropic strongly-coupled N=4 plasma from holography. It is shown that, similar to the isotropic plasma, the energy loss of the rotating quark is due to either the drag force or radiation with a continuous crossover from drag-dominated regime to the radiation dominated regime. We find that the anisotropy has a significant effect on the energy loss of the heavy quark, specially in the crossover regime. We argue that the energy loss due to radiation in anisotropic media is less than the isotropic case. Interestingly this is similar to analogous calculations for the energy loss in weakly coupled anisotropic plasma.
We investigate the stability of the pion string in a thermal bath and a dense medium. We find that stability is dependent on the order of the chiral transition. String core stability within the experimentally allowed regime is found only if the chira l transition is second order, and even there the stable region is small, i.e., the temperature below which the core is unstable is close to the critical temperature of the phase transition. We also find that the presence of a dense medium, in addition to the thermal bath, enhances the experimentally accessible region with stable strings. We also argue that once the string core decays, the effective winding of the string persists at large distances from the string core. Our analysis is done both in the chiral limit, which is mainly what has been explored in the literature up to now, and for the physical $h e 0$ case, where a conceptual framework is set up for addressing this regime and some simple estimates are done.
Renormalization group evolution of QCD composite light-cone operators, built from two and more quark and gluon fields, is responsible for the logarithmic scaling violations in diverse physical observables. We analyze spectra of anomalous dimensions o f these operators at large conformal spins at weak and strong coupling with the emphasis on the emergence of a dual string picture. The multi-particle spectrum at weak coupling has a hidden symmetry due to integrability of the underlying dilatation operator which drives the evolution. In perturbative regime, we demonstrate the equivalence of the one-loop cusp anomaly to the disk partition function in two-dimensional Yang-Mills theory which admits a string representation. The strong coupling regime for anomalous dimensions is discussed within the two pictures addressed recently, -- minimal surfaces of open strings and rotating long closed strings in AdS background. In the latter case we find that the integrability implies the presence of extra degrees of freedom -- the string junctions. We demonstrate how the analysis of their equations of motion naturally agrees with the spectrum found at weak coupling.
Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time depen dent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which real world theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theorys confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the abrupt quench limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا