ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Gauge Extensions of the MSSM at the LHC

99   0   0.0 ( 0 )
 نشر من قبل Ismail Turan
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Ahmed Ali




اسأل ChatGPT حول البحث

The extensions of the minimal supersymmetric model (MSSM), driving mainly from the need to solve the mu problem, involve novel matter species and gauge groups. These extended MSSM models can be searched for at the LHC via the effects of the gauge and Higgs bosons or their fermionic partners. Traditionally, the focus has been on the study of the extra forces induced by the new gauge and Higgs bosons present in such models. An alternative way of studying such effects is through the superpartners of matter species and the gauge forces. We thus consider a $U(1)^prime$ gauge extension of the MSSM, and perform an extensive study of the signatures of the model through the production and decays of the scalar quarks and gluino, which are expected to be produced copiously at the LHC. After a detailed study of the distinctive features of such models with regard to the signatures at the LHC, we carry out a detailed Monte Carlo analysis of the signals from the process pp-> n leptons + m jets + EMT, and compare the resulting distributions with those predicted by the MSSM. Our results show that the searches for the extra gauge interactions in the supersymmetric framework can proceed not only through the forces mediated by the gauge and Higgs bosons but also through the superpartner forces mediated by the gauge and Higgs fermions. Analysis of the events induced by the squark/gluino decays presented here is complementary to the direct Z searches at the LHC.



قيم البحث

اقرأ أيضاً

We present the currently most precise W boson mass (M_W) prediction in the Minimal Supersymmetric Standard Model (MSSM) and discuss how it is affected by recent results from the LHC. The evaluation includes the full one-loop result and all known high er order corrections of SM and SUSY type. We show the MSSM prediction in the M_W-m_t plane, taking into account constraints from Higgs and SUSY searches. We point out that even if stops and sbottoms are heavy, relatively large SUSY contributions to M_W are possible if either charginos, neutralinos or sleptons are light. In particular we analyze the effect on the M_W prediction of the Higgs signal at about 125.6 GeV, which within the MSSM can in principle be interpreted as the light or the heavy CP-even Higgs boson. For both interpretations the predicted MSSM region for M_W is in good agreement with the experimental measurement. We furthermore discuss the impact of possible future LHC results in the stop sector on the M_W prediction, considering both the cases of improved limits and of the detection of a scalar top quark.
We present two minimal extensions of the standard model, each giving rise to baryogenesis. They include heavy color-triplet scalars interacting with a light Majorana fermion that can be the dark matter (DM) candidate. The electroweak charges of the n ew scalars govern their couplings to quarks of different chirality, which leads to different collider signals. These models predict monotop events at the LHC and the energy spectrum of decay products of highly polarized top quarks can be used to establish the chiral nature of the interactions involving the heavy scalars and the DM. Detailed simulation of signal and standard model background events is performed, showing that top quark chirality can be distinguished in hadronic and leptonic decays of the top quarks.
We consider extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. Assuming that the fundam ental string mass scale is in the TeV range and the theory is weakly coupled, we discuss possible signals of string physics at the Large Hadron Collider (LHC). In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first resonant pole to determine the discovery potential of LHC for the first Regge excitations of the quark and gluon. Remarkably, the reach of LHC after a few years of running can be as high as 6.8 TeV. Even after the first 100 pb^{-1} of integrated luminosity, string scales as high as 4.0 TeV can be discovered. For string scales as high as 5.0 TeV, observations of resonant structures in pp to {rm direct} gamma + jet can provide interesting corroboration for string physics at the TeV-scale.
We investigate multilepton LHC signals arising from electroweak processes involving sleptons. We consider the framework of general gauge mediated supersymmetry breaking, focusing on models where the low mass region of the superpartner spectrum consis ts of the three generations of charged sleptons and the nearly massless gravitino. We demonstrate how such models can provide an explanation for the anomalous four lepton events recently observed by the CMS collaboration, while satisfying other existing experimental constraints. The best fit to the CMS data is obtained for a selectron/smuon mass of around 145 GeV and a stau mass of around 90 GeV. These models also give rise to final states with more than four leptons, offering alternative channels in which they can be probed and we estimate the corresponding production rates at the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا