ﻻ يوجد ملخص باللغة العربية
We present a practical way of smoothing discrete breakup S-matrix elements calculated by the continuum-discretized coupled-channel method (CDCC). This method makes the smoothing procedure much easier. The reliability of the smoothing method is confirmed for the three-body breakup reactions, 58Ni(d,pn) at 80 MeV and 12C(6He,4He2n) at 229.8 MeV.
We present a method for smoothing discrete breakup $S$-matrix elements calculated by the method of continuum-discretized coupled-channels (CDCC). This smoothing method makes it possible to apply CDCC to four-body breakup reactions. The reliability of
We re-examine the deuteron elastic breakup cross sections on 12C and 10Be at low incident energies, for which a serious discrepancy between the continuum-discretized coupled-channels method (CDCC) and the Faddeev-Alt-Grassberger-Sandhas theory (FAGS)
This is a review on recent developments of the continuum discretized coupled-channels method (CDCC) and its applications to nuclear physics, cosmology and astrophysics, and nuclear engineering. The theoretical foundation of CDCC is shown, and a micro
The Continuum Discretized Coupled Channels (CDCC) method is a well established theory for direct nuclear reactions which includes breakup to all orders. Alternatively, the 3-body problem can be solved exactly within the Faddeev formalism which explic
Background: In the continuum-discretized coupled-channel method, a breakup cross section (BUX) is obtained as an admixture of several components of different channels in multi-channel scattering. Purpose: Our goal is to propose an approximate way of