ترغب بنشر مسار تعليمي؟ اضغط هنا

The Need for Plasma Astrophysics in Understanding Life Cycles of Active Galaxies

89   0   0.0 ( 0 )
 نشر من قبل Hui Li
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف H. Li




اسأل ChatGPT حول البحث

In this White Paper, we emphasize the need for and the important role of plasma astrophysics in the studies of formation, evolution of, and feedback by Active Galaxies. We make three specific recommendations: 1) We need to significantly increase the resolution of VLA, perhaps by building an EVLA-II at a modest cost. This will provide the angular resolution to study jets at kpc scales, where, for example, detailed Faraday rotation diagnosis can be done at 1GHz transverse to jets; 2) We need to build coordinated programs among NSF, NASA, and DOE to support laboratory plasma experiments (including liquid metal) that are designed to study key astrophysical processes, such as magneto-rotational instability (origin of angular momentum transport), dynamo (origin of magnetic fields), jet launching and stability. Experiments allowing access to relativistic plasma regime (perhaps by intense lasers and magnetic fields) will be very helpful for understanding the stability and dissipation physics of jets from Supermassive Black Holes; 3) Again through the coordinated support among the three Agencies, we need to invest in developing comprehensive theory and advanced simulation tools to study the accretion disks and jets in relativistic plasma physics regime, especially in connecting large scale fluid scale phenomena with relativistic kinetic dissipation physics through which multi-wavelength radiation is produced.



قيم البحث

اقرأ أيضاً

163 - D. Uzdensky 2009
This is a white paper submitted to the Stars and Stellar Evolution (SSE) Science Frontier Panel (SFP) of the NRCs Astronomy and Astrophysics 2010 Decadal Survey. The white paper is endorsed by the American Physical Societys (APS) Topical Group on Plasma Astrophysics (GPAP).
94 - D. Uzdensky 2019
This is a science white paper submitted to the Astro-2020 and Plasma-2020 Decadal Surveys. The paper describes the present status and emerging opportunities in Extreme Plasma Astrophysics -- a study of astrophysically-relevant plasma processes taking place under extreme conditions that necessitate taking into account relativistic, radiation, and QED effects.
79 - John ZuHone 2016
The most massive baryonic component of galaxy clusters is the intracluster medium (ICM), a diffuse, hot, weakly magnetized plasma that is most easily observed in the X-ray band. Despite being observed for decades, the macroscopic transport properties of the ICM are still not well-constrained. A path to determine macroscopic ICM properties opened up with the discovery of cold fronts. These were observed as sharp discontinuities in surface brightness and temperature in the ICM, with the property that the brighter (and denser) side of the discontinuity is the colder one. The high spatial resolution of the Chandra X-ray Observatory revealed two puzzles about the cold fronts. First, they should be subject to Kelvin-Helmholtz instabilites, yet in many cases they appear relatively smooth and undisturbed. Second, the width of the interface between the two gas phases is typically narrower than the mean free path of the particles in the plasma, indicating negligible thermal conduction. From the time of their discovery, it was realized that these special characteristics of cold fronts may be used to probe the physical properties of the cluster plasma. In this review, we will discuss the recent simulations of cold front formation and evolution in galaxy clusters, with a focus on those which have attempted to use these features to constrain the physics of the ICM. In particular, we will focus on the effects of magnetic fields, viscosity, and thermal conductivity on the stability properties and long-term evolution of cold fronts. We conclude with a discussion on what important questions remain unanswered, and the future role of simulations and the next generation of X-ray observatories.
The example of disk galaxy rotation curves is given for inferring dark matter from redundant computational procedure because proper care of astrophysical and computational context was not taken. At least three attempts that take the context into acco unt have not found adequate voice because of haste in wrongly concluding existence of dark matter on the part of even experts. This firmly entrenched view, prevalent for about 3/4ths of a century, has now become difficult to correct. The right context must be borne in mind at every step to avoid such a situation. Perhaps other examples exist. Keywords: dark matter; disk galaxy; rotation curve; context-awareness. Topics: Algorithms; Applications.
We present a study of the spatial distribution and kinematics of star-forming galaxies in 30 massive clusters at 0.15<z<0.30, combining wide-field Spitzer 24um and GALEX NUV imaging with highly-complete spectroscopy of cluster members. The fraction ( f_SF) of star-forming cluster galaxies rises steadily with cluster-centric radius, increasing fivefold by 2r200, but remains well below field values even at 3r200. This suppression of star formation at large radii cannot be reproduced by models in which star formation is quenched in infalling field galaxies only once they pass within r200 of the cluster, but is consistent with some of them being first pre-processed within galaxy groups. Despite the increasing f_SF-radius trend, the surface density of star-forming galaxies actually declines steadily with radius, falling ~15x from the core to 2r200. This requires star-formation to survive within recently accreted spirals for 2--3Gyr to build up the apparent over-density of star-forming galaxies within clusters. The velocity dispersion profile of the star-forming galaxy population shows a sharp peak of 1.44-sigma_v at 0.3r500, and is 10--35% higher than that of the inactive cluster members at all cluster-centric radii, while their velocity distribution shows a flat, top-hat profile within r500. All of these results are consistent with star-forming cluster galaxies being an infalling population, but one that must also survive ~0.5--2Gyr beyond passing within r200. By comparing the observed distribution of star-forming galaxies in the stacked caustic diagram with predictions from the Millennium simulation, we obtain a best-fit model in which SFRs decline exponentially on quenching time-scales of 1.73pm0.25 Gyr upon accretion into the cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا