ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray Timing of Neutron Stars, Astrophysical Probes of Extreme Physics

42   0   0.0 ( 0 )
 نشر من قبل Zaven Arzoumanian
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The characteristic physical timescales near stellar-mass compact objects are measured in milliseconds. These timescales -- the free-fall time, the fastest stable orbital period, and stellar spin periods -- encode the fundamental physical properties of compact objects: mass, radius, and angular momentum. The characteristic temperature of matter in the vicinity of neutron stars is such that the principal electromagnetic window into their realms is the X-ray band. Because of these connections to the fundamental properties of neutron stars, X-ray timing studies remain today the most direct means of probing their structure and dynamics. While current X-ray observatories have revealed many relevant and fascinating phenomena, they lack the sensitivity to fully exploit them to uncover the fundamental properties of compact objects and their extreme physics. With this white paper, we summarize and highlight the science opportunities that will accompany an order-of-magnitude improvement in X-ray timing sensitivity, a goal attainable in the coming decade.

قيم البحث

اقرأ أيضاً

Certain classes of astrophysical objects, namely magnetars and central engines of supernovae and gamma-ray bursts (GRBs), are characterized by extreme physical conditions not encountered elsewhere in the Universe. In particular, they possess magnetic fields that exceed the critical quantum field of 44 teragauss. Figuring out how these complex ultra-magnetized systems work requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD). However, an ultra-strong magnetic field modifies the underlying physics to such an extent that many relevant plasma-physical problems call for building QED-based relativistic quantum plasma physics. In this review, after describing the extreme astrophysical systems of interest and identifying the key relevant plasma-physical problems, we survey the recent progress in the development of such a theory. We discuss how a super-critical field modifies the properties of vacuum and matter and outline the basic theoretical framework for describing both non-relativistic and relativistic quantum plasmas. We then turn to astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and central engines of supernovae and long GRBs. Specifically, we discuss propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and GRB jet launching and propagation; energy-transport processes governing the thermodynamics of extreme plasma environments; micro-scale kinetic plasma processes important in the interaction of intense magnetospheric electric currents with a magnetars surface; and magnetic reconnection of ultra-strong magnetic fields. Finally, we point out that future progress will require the development of numerical modeling capabilities.
Neutron Stars (NSs) are compact stellar objects that are stable solutions in General Relativity. Their internal structure is usually described using an equation of state that involves the presence of ordinary matter and its interactions. However ther e is now a large consensus that an elusive sector of matter in the Universe, described as dark matter, remains as yet undiscovered. In such a case, NSs should contain both, baryonic and dark matter. We argue that depending on the nature of the dark matter and in certain circumstances, the two matter components would form a mixture inside NSs that could trigger further changes, some of them observable. The very existence of NSs constrains the nature and interactions of dark matter in the Universe
The advent of moderately high-resolution X-ray spectroscopy with Chandra and XMM promised to usher in a new age in the study of neutron stars: we thought we would study neutron stars like stars, with resolved absorption spectra revealing their surfac e chemical composition and physical conditions (e.g. surface gravity, pressure, temperature). Nature, however, did not cooperate in this endeavor, as observations of neutron stars have not revealed verified atomic absorption lines yet. In the near future, advancements in transition-edge sensors (TES) technology will allow for electron-volt-resolution spectroscopy combined with nanoseconds-precision timing. Combining these detectors with collector optics will also us to study neutron stars in much greater detail by achieving high-energy resolution with much larger collecting areas to uncover even weak spectral features over a wide range of the photon energies. Perhaps we will finally be able to study neutron stars like stars.
Some thermonuclear (type I) X-ray bursts at the neutron star surfaces in low-mass X-ray binaries take place during hard persistent states of the systems. Spectral evolution of these bursts is well described by the atmosphere model of a passively cool ing neutron star when the burst luminosity is high enough. The observed spectral evolution deviates from the model predictions when the burst luminosity drops below a critical value of 20-70% of the maximum luminosity. We suggest that these deviations are induced by the additional heating of the accreted particles. We present a method for computation of the neutron star atmosphere models heated by accreted particles assuming that their energy is released via Coulomb interactions with electrons. We compute the temperature structures and the emergent spectra of the atmospheres of various chemical compositions and investigate the dependence of the results on the other model parameters. We show that the heated atmosphere develops the hot (20--100 keV) corona-like surface layer cooled by Compton scattering, and the deeper, almost isothermal optically thick region with a temperature of a few keV. The emergent spectra deviate strongly from those of undisturbed neutron star atmospheres, with the main differences being the presence of a high-energy tail and a strong excess in the low-energy part of the spectrum. They also lack the iron absorption edge, which is visible in the spectra of undisturbed low-luminosity atmospheres with solar chemical composition. Using the computed spectra, we obtained the dependences of the dilution and color-correction factors as functions of relative luminosities for pure helium and solar abundance atmospheres. We show that the helium model atmosphere heated by accretion corresponding to 5% of the Eddington luminosity describes well the late stages of the X-ray bursts in 4U 1820-30.
338 - Hajime Inoue 2019
Structures of X-ray emitting magnetic polar regions on neutron stars in X-ray pulsars are studied in a range of the accretion rate, 10$^{17}$ g s$^{-1} sim 10^{18}$ g s$^{-1}$. It is shown that a thin but tall, radiation energy dominated, X-ray emitt ing polar cone appears at each of the polar regions. The height of the polar cone is several times as large as the neutron star radius. The energy gain due to the gravity of the neutron star in the polar cone exceeds the energy loss due to photon diffusion in the azimuthal direction of the cone, and a significant amount of energy is advected to the neutron star surface. Then, the radiation energy carried with the flow should become so large for the radiation pressure to overcome the magnetic pressure at the bottom of the cone. As a result, the matter should expand in the tangential direction along the neutron star surface, dragging the magnetic lines of force, and form a mound-like structure. The advected energy to the bottom of the cone should finally be radiated away from the surface of the polar mound and the matter should be settled on the neutron star surface there. From such configurations, we can expect an X-ray spectrum composed of a multi-color blackbody spectrum from the polar cone region and a quasi-single blackbody spectrum from the polar mound region. These spectral properties agree with observations. A combination of a fairly sharp pencil beam and a broad fan beam is expected from the polar cone region, while a broad pencil beam is expected from the polar mound region. With these X-ray beam properties, basic patterns of pulse profiles of X-ray pulsars can be explained too.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا