ترغب بنشر مسار تعليمي؟ اضغط هنا

The Clustering of MgII Absorption Systems at z=0.5 and Detection of Cold Gas in Massive Halos

138   0   0.0 ( 0 )
 نشر من قبل Jean-Rene Gauthier
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure the large-scale clustering of MgII lambdalambda 2796,2803 absorbers with respect to a population of luminous red galaxies (LRGs) at z sim 0.5. From the cross-correlation measurements between MgII absorbers and LRGs, we calculate the mean bias of the dark matter halos in which the absorbers reside. We investigate systematic uncertainties in the clustering measurements due to the sample selection of LRGs and due to uncertainties in photometric redshifts. First, we compare the cross-correlation amplitudes determined using a it flux-limited LRG sample and a volume-limited one. The comparison shows that the relative halo bias of MgII absorbers using a flux-limited LRG sample can be overestimated by as much as approx 20%. Next, we assess the systematic uncertainty due to photometric redshift errors using a mock galaxy catalog with added redshift uncertainties comparable to the data. We show that the relative clustering amplitude measured without accounting for photometric redshift uncertainties is overestimated by approx 10%. After accounting for these two main uncertainties, we find a 1-sigma anti-correlation between mean halo bias and absorber strength that translates into a 1-sigma anti-correlation between mean galaxy mass and W_r(2796). The results indicate that a significant fraction of the MgII absorber population of W_r(2796)=1-1.5 AA are found in group-size dark matter halos of log M_h < 13.4, whereas absorbers of W_r(2796)>1.5 AA are seen in halos of log M_h <12.7. A larger dataset would improve the precision of the clustering measurements and the relationship between W_r and halo mass. Finally, the strong clustering of MgII absorbers down to sim 0.3 h^{-1} Mpc indicates the presence of cool gas inside the virial radii of the halos hosting the LRGs.



قيم البحث

اقرأ أيضاً

We report 4 new detections of 21-cm absorption from a systematic search of 21-cm absorption in a sample of 17 strong (Wr(MgII 2796)>1A) intervening MgII absorbers at 0.5<z<1.5. We also present 20-cm milliarcsecond scale maps of 40 quasars having 42 i ntervening strong MgII absorbers for which we have searched for 21-cm absorption. Combining 21-cm absorption measurements for 50 strong MgII systems from our surveys with the measurements from literature, we obtain a sample of 85 strong MgII absorbers at 0.5<z<1 and 1.1<z<1.5. We present detailed analysis of this sample, taking into account the effect of the varying 21-cm optical depth sensitivity and covering factor associated with the different quasar sight lines. We find that the 21-cm detection rate is higher towards the quasars with flat or inverted spectral index at cm wavelengths. About 70% of 21-cm detections are towards the quasars with linear size, LS<100 pc. The 21-cm absorption lines having velocity widths, DeltaV>100 km/s are mainly seen towards the quasars with extended radio morphology at arcsecond scales. However, we do not find any correlation between the integrated 21-cm optical depth or DeltaV with the LS measured from the milliarcsecond scale images. All this can be understood if the absorbing gas is patchy with a typical correlation length of ~30-100 pc. We show that within the measurement uncertainty, the 21-cm detection rate in strong MgII systems is constant over 0.5<z<1.5, i.e., over ~30% of the total age of universe. We show that the detection rate can be underestimated by up to a factor 2 if 21-cm optical depths are not corrected for the partial coverage estimated using milliarcsecond scale maps. Since stellar feedback processes are expected to diminish the filling factor of cold neutral medium over 0.5<z<1, this lack of evolution in the 21-cm detection rate in strong MgII absorbers is intriguing. [abridged]
215 - G. G. Kacprzak 2011
It is well established that MgII absorption lines detected in background quasar spectra arise from gas structures associated with foreground galaxies. The degree to which galaxy evolution is driven by the gas cycling through halos is highly uncertain because their gas mass density is poorly constrained. Fitting the MgII equivalent width (W) distribution with a Schechter function and applying the N(HI)-W correlation of Menard & Chelouche, we computed Omega(HI)_MgII ~ Omega(HI)_halo =(1.41 +0.75 -0.44)x10^-4 for 0.4<z<1.4. We exclude DLAs from our calculations so that Omega(HI)_halo comprises accreting and/or outflowing halo gas not locked up in cold neutral clouds. We deduce the cosmic HI gas mass density fraction in galactic halos traced by MgII absorption is Omega(HI)_halo/Omega(HI)_DLA=15% and Omega(HI)_halo/Omega_b=0.3%. Citing several lines of evidence, we propose infall/accretion material is sampled by small W whereas outflow/winds are sampled by large W, and find Omega(HI)_infall is consistent with Omega(HI)_outflow for bifurcation at W=1.23^{+0.15}_{-0.28}AA; cold accretion would then comprise no more than ~7% of of the total HI mass density. We discuss evidence that (1) the total HI mass cycling through halos remains fairly constant with cosmic time and that the accretion of HI gas sustains galaxy winds, and (2) evolution in the cosmic star formation rate depends primarily on the rate at which cool HI gas cycles through halos.
We calculate the real- and redshift-space clustering of massive galaxies at z~0.5 using the first semester of data by the Baryon Oscillation Spectroscopic Survey (BOSS). We study the correlation functions of a sample of 44,000 massive galaxies in the redshift range 0.4<z<0.7. We present a halo-occupation distribution modeling of the clustering results and discuss the implications for the manner in which massive galaxies at z~0.5 occupy dark matter halos. The majority of our galaxies are central galaxies living in halos of mass 10^{13}Msun/h, but 10% are satellites living in halos 10 times more massive. These results are broadly in agreement with earlier investigations of massive galaxies at z~0.5. The inferred large-scale bias (b~2) and relatively high number density (nbar=3e-4 h^3 Mpc^{-3}) imply that BOSS galaxies are excellent tracers of large-scale structure, suggesting BOSS will enable a wide range of investigations on the distance scale, the growth of large-scale structure, massive galaxy evolution and other topics.
170 - G. G. Kacprzak 2011
We have directly compared MgII halo gas kinematics to the rotation velocities derived from emission/absorption lines of the associated host galaxies. Our 0.096<z<0.148 volume-limited sample comprises 13 ~L* galaxies, with impact parameters of 12-90 k pc from background quasars sight-lines, associated with 11 MgII absorption systems with MgII equivalent widths 0.3< W_r(2796)<2.3A. For only 5/13 galaxies, the absorption resides to one side of the galaxy systemic velocity and trends to align with one side of the galaxy rotation curve. The remainder have absorption that spans both sides of the galaxy systemic velocity. These results differ from those at z~0.5, where 74% of the galaxies have absorption residing to one side of the galaxy systemic velocity. For all the z~0.1 systems, simple extended disk-like rotation models fail to reproduce the full MgII velocity spread, implying other dynamical processes contribute to the MgII kinematics. In fact 55% of the galaxies are counter-rotating with respect to the bulk of the MgII absorption. These MgII host-galaxies are isolated, have low star formation rates (SFRs) in their central regions (<1 Msun/yr), and SFRs per unit area well below those measured for galaxies with strong winds. The galaxy NaID (stellar+ISM) and MgIb (stellar) absorption line ratios are consistent with a predominately stellar origin, implying kinematically quiescent interstellar media. These facts suggest that the kinematics of the MgII absorption halos for our sample of galaxies are not influenced by galaxy--galaxy environmental effects, nor by winds intrinsic to the host galaxies. For these low redshift galaxies, we favor a scenario in which infalling gas accretion provides a gas reservoir for low-to-moderate star formation rates and disk/halo processes.
242 - R. Srianand 2011
(Abridged) We present the results of a systematic GBT and GMRT survey for 21-cm absorption in a sample of 10 DLAs at 2<z_abs<3.4. Analysis of L-band VLBA images of the background QSOs are also presented. We detect 21-cm absorption in only one DLA (at z_abs = 3.1745 towards J1337+3152). Combining our data with the data from the literature (a sample of 28 DLAs) and assuming the measured core fraction at milliarcsecond scale to represent the gas covering factor, we find that the HI gas in DLAs at z> 2 is predominantly constituted by WNM. The detection rate of 21-cm absorption seems to be higher for systems with higher N(HI) or metallicity. However, no clear correlation is found between the integrated 21-cm optical depth (or spin temperature) and either N(HI), metallicity or velocity spread of the low ionization species. There are 13 DLAs in our sample for which high resolution optical spectra covering the expected wavelength range of H_2 absorption are available. We report the detection of H_2 molecules in the z_abs = 3.3871 21-cm absorber towards J0203+1134 (PKS 0201+113). In 8 cases, neither H_2 nor 21-cm absorption are detected. The lack of 21-cm and H_2 absorption in these systems can be explained if most of the HI in these DLAs originate from low density high temperature gas. In one case we have a DLA with 21-cm absorption not showing H_2 absorption. In two cases, both species are detected but do not originate from the same velocity component. In the remaining 2 cases 21-cm absorption is not detected despite the presence of H_2 with evidence for the presence of cold gas. All this is consistent with the idea that the H_2 components seen in DLAs are compact (with sizes of < 15 pc) and contain only a small fraction (i.e typically <10%) of the total N(HI) measured in the DLAs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا