ترغب بنشر مسار تعليمي؟ اضغط هنا

The nature of late-type spiral galaxies: structural parameters, optical and near-infrared colour profiles, and dust extinction

100   0   0.0 ( 0 )
 نشر من قبل Reynier Peletier
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse V and H-band surface photometry of a sample of 18 Sb-Sd galaxies. Combining high resolution HST images with ground-based NIR observations, we extract photometric profiles, which cover the whole disk and provide the highest possible resolution. This is the first photometric study of late-type spirals for which the stellar kinematics have been measured. For 10 out of the 18 galaxies, HST data in both F160W (H) and F606W (V) are available, and, for those, we present colour maps and radial colour profiles at the resolution of the Hubble Space Telescope. Colours vary significantly from galaxy to galaxy, but tend to be highly homogeneous within each galaxy, with smooth and flat colour profiles. Some of the colour maps show jumps in the inner regions, likely due to dust. We determine extinction-maps in an almost model-independent way using the V-H colour map and the SAURON Mg b absorption line map of Ganda et al. (2007). The maps show that A_V ranges from 0 to 2 mag, in the center from 0 to 1.5 mag, in agreement with the models of Tuffs et al. (2004). We describe the surface brightness profiles as the superposition of an exponential disk and a Sersic bulge. The bulges are small (0.1-2.5 kpc), and show a shape parameter n ranging from ~ 0.7 to 3, with a mean value smaller than two: well below the value for the classical de Vaucouleurs bulges. Most galaxies (16 out of 18) show a central light excess above the Sersic fit to the bulge, which can be interpreted as a nuclear cluster, as shown by previous studies. We provide zero-order estimates for the magnitude of these components. We discuss the correlations among the structural galaxy parameters and with other relevant quantities (abridged).



قيم البحث

اقرأ أيضاً

Since 1997, BL Lacertae has undergone a phase of high optical activity, with the occurrence of several prominent outbursts. Starting from 1999, the Whole Earth Blazar Telescope (WEBT) consortium has organized various multifrequency campaigns on this blazar, collecting tens of thousands of data points. One of the main issues in the analysis of this huge dataset has been the study of colour variability. The massive amount of optical and near-infrared data collected during the campaigns enables us to perform a deep analysis of multiband data, with the aim of understanding the flux variability mechanisms. We use a new approach for the analysis of these data, focusing on the source spectral evolution. We show that the overall behaviour of the BL Lacertae light and colour curves can be explained in terms of changing viewing angle of a moving, discrete emitting region, which causes variable Doppler boosting of the corresponding radiation. A fractal helical structure is suggested to be at the origin of the different time scales of variability.
Ground-based surveys have mapped the stellar outskirts of Local Group galaxies in unprecedented detail, but extending this work to other galaxies is necessary to overcome stochastic variations in evolutionary history and provide more stringent constr aints on cosmological galaxy formation models. As part of our continuing program of ultra-deep imagery of galaxies beyond the Local Group, we present a wide-field analysis of the isolated late-type spiral NGC2403 using data obtained with Suprime-Cam on Subaru. The survey reaches a maximum projected radius of 30 kpc or deprojected radius of R_dp~60 kpc. The colour-magnitude diagram reaches 1.5 mag below the tip of the metal-poor red giant branch (RGB) at a completeness rate > 50% for R_dp >12 kpc. Using the combination of diffuse light photometry and resolved star counts, we are able to trace the radial surface brightness (SB) profile over a much larger range of radii and surface brightness than is possible with either technique alone. The exponential disc as traced by RGB stars dominates the SB profile out to >8 disc scale-lengths, or R_dp~18 kpc, and reaches a V-band SB of 29 mag per sq. arcsec. Beyond this radius, we find evidence for an extended structural component with a significantly flatter SB profile than the inner disc and which we trace to R_dp~40 kpc and ~32 mag per sq. arcsec. This component can be fit with a power-law index of ~3, has an axial ratio consistent with that of the inner disc and has a V-band luminosity of 1-7% that of the whole galaxy. At R_dp~20 - 30 kpc, we estimate a peak metallicity [M/H]= -1.0+/-0.3. Although the extant data are unable to discriminate between stellar halo or thick disc interpretations of this component, our results support the notion that faint, extended stellar structures are a common feature of all disc galaxies, even isolated, low-mass systems.
144 - Weichen Wang 2017
This paper uses radial colour profiles to infer the distributions of dust, gas and star formation in z=0.4-1.4 star-forming main sequence galaxies. We start with the standard UVJ-based method to estimate dust extinction and specific star formation ra te (sSFR). By replacing J with I band, a new calibration method suitable for use with ACS+WFC3 data is created (i.e. UVI diagram). Using a multi-wavelength multi-aperture photometry catalogue based on CANDELS, UVI colour profiles of 1328 galaxies are stacked in stellar mass and redshift bins. The resulting colour gradients, covering a radial range of 0.2--2.0 effective radii, increase strongly with galaxy mass and with global $A_V$. Colour gradient directions are nearly parallel to the Calzetti extinction vector, indicating that dust plays a more important role than stellar population variations. With our calibration, the resulting $A_V$ profiles fall much more slowly than stellar mass profiles over the measured radial range. sSFR gradients are nearly flat without central quenching signatures, except for $M_*>10^{10.5} M_{odot}$, where central declines of 20--25 per cent are observed. Both sets of profiles agree well with previous radial sSFR and (continuum) $A_V$ measurements. They are also consistent with the sSFR profiles and, if assuming a radially constant gas-to-dust ratio, gas profiles in recent hydrodynamic models. We finally discuss the striking findings that SFR scales with stellar mass density in the inner parts of galaxies, and that dust content is high in the outer parts despite low stellar-mass surface densities there.
Stellar density and bar strength should affect the temperatures of the cool (T ~ 20-30 K) dust component in the inner regions of galaxies, which implies that the ratio of temperatures in the circumnuclear regions to the disk should depend on Hubble t ype. We investigate the differences between cool dust temperatures in the central 3 kpc and disk of 13 nearby galaxies by fitting models to measurements between 70 and 500 microns. We attempt to quantify temperature trends in nearby disk galaxies, with archival data from Spitzer/MIPS and new observations with Herschel/SPIRE, which were acquired during the first phases of the Herschel observations for the KINGFISH (key insights in nearby galaxies: a far-infrared survey with Herschel) sample. We fit single-temperature modified blackbodies to far-infrared and submillimeter measurements of the central and disk regions of galaxies to determine the temperature of the component(s) emitting at those wavelengths. We present the ratio of central-region-to-disk-temperatures of the cool dust component of 13 nearby galaxies as a function of morphological type. We find a significant temperature gradient in the cool dust component in all galaxies, with a mean center-to-disk temperature ratio of 1.15 +/- 0.03. The cool dust temperatures in the central ~3 kpc of nearby galaxies are 23(+/-3)% hotter for morphological types earlier than Sc, and only 9(+/-3)% hotter for later types. The temperature ratio is also correlated with bar strength, with only strongly barred galaxies having a ratio over 1.2. The strong radiation field in the high stellar density of a galactic bulge tends to heat the cool dust component to higher temperatures, at least in early-type spirals with relatively large bulges, especially when paired with a strong bar.
In order to study early type galaxies in their simplest environments, we have constructed a well-defined sample of 30 isolated galaxies. The sample contains all RC3 early-type galaxies with no other cataloged galaxy with known redshift lying within a projected radius of 1 (h_100)^{-1} Mpc and =/- 1000 km/s (where we use the recessional velocities in the RC3). We have obtained optical and near-infrared images of 23 of the galaxies and of a comparison sample of 13 early-type galaxies in X-ray detected poor groups of galaxies. We have applied the techniques of unsharp masking, galaxy model division, and color maps to search for morphological features that might provide clues to the evolution of these galaxies. Evidence for dust features is found in approximately 75% of both the isolated and group galaxies (17 of 22 and 9 of 12, respectively). However, shells or tidal features are much more prevalent in our isolated sample than in our group sample (9 of 22 or 41% versus 1 of 12 or 8%, respectively). The isolation and colors of these shell galaxies make it unlikely that tidal interactions or asymmetric star formation are the causes of such features. One model that is not ruled out is that mergers produce the shells. If shells and dust are both merger signatures, the absence of shells in group ellipticals implies that shells: 1) form more easily, 2) are younger, and/or 3) are longer-lived in isolated environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا