ﻻ يوجد ملخص باللغة العربية
We have investigated the low-energy electronic structure of the heavy fermion superconductor CeCoIn5 by angle-resolved photoemission. We focus on the dispersion and the peak width of the prominent quasi-two-dimensional Fermi surface sheet at the corner of the Brillouin zone as a function of temperature along certain k-directions with a photon energy of hn = 100 eV. We find slight changes of the Fermi vector and an anomalous broadening of the peak width when the Fermi energy is approached. Additionally we performed resonant ARPES experiments with hn = 121 eV. A flat f-derived band is observed with a distinct temperature dependence and a k-dependent spectral weight. These results, including both off- and on-resonant measurements, fit qualitatively to a two level mixing model derived from the Periodic Anderson Model.
We have investigated the low-energy electronic structure of the heavy fermion superconductor CeCoIn5 by angle-resolved photoemission and band structure calculations. We measured the Fermi surface and energy distribution maps along the high-symmetry d
We report high resolution angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of BaFe$_2$As$_2$, which is one of the parent compounds of the Fe-pnictide superconductors. ARPES measurements have been performed at 20 K
One of central issues in iron-based superconductors is the role of structural change to the superconducting transition temperature (T_c). It was found in FeSe that the lattice strain leads to a drastic increase in T_c, accompanied by suppression of n
We present a soft X-ray angle-resolved photoemission spectroscopy (SX-ARPES) study of the stoichiometric pnictide superconductor LaRu2P2. The observed electronic structure is in good agreement with density functional theory (DFT) calculations. Howeve
The electronic structure of LaOFeAs, a parent compound of iron-arsenic superconductors, is studied by angleresolved photoemission spectroscopy. By examining its dependence on photon energy, polarization, sodium dosing and the counting of Fermi surfac