ﻻ يوجد ملخص باللغة العربية
This paper presents solutions to Density Classification Task (DCT) using a variant of Cellular Automata (CA) called Programmable Cellular Automata (PCA). The translation property as well as the density preserving property of fundamental CA rules in 1D and 2D, and the advantage of PCA are embedded together to obtain the DCT solution. The advantage of PCA over standard CA is reported. A general 2D DCT of arbitrary shapes and sizes, its applicability and its solution using PCA is newly introduced.
We present an intuitive formalism for implementing cellular automata on arbitrary topologies. By that means, we identify a symmetry operation in the class of elementary cellular automata. Moreover, we determine the subset of topologically sensitive e
The mechanism which discriminates the pattern classes at the same $lambda$, is found. It is closely related to the structure of the rule table and expressed by the numbers of the rules which break the strings of the quiescent states. It is shown that
In this paper, linear Cellular Automta (CA) rules are recursively generated using a binary tree rooted at 0. Some mathematical results on linear as well as non-linear CA rules are derived. Integers associated with linear CA rules are defined as linea
We study sources of isomorphisms of additive cellular automata on finite groups (called index-group). It is shown that many isomorphisms (called regular) of automata are reducible to the isomorphisms of underlying algebraic structures (such as the in
Gauge symmetries play a fundamental role in Physics, as they provide a mathematical justification for the fundamental forces. Usually, one starts from a non-interactive theory which governs `matter, and features a global symmetry. One then extends th