ﻻ يوجد ملخص باللغة العربية
We study the velocity distribution of Milky Way disk stars in a kiloparsec-sized region around the Sun, based on ~ 2 million M-type stars from DR7 of SDSS, which have newly re-calibrated absolute proper motions from combining SDSS positions with the USNO-B catalogue. We estimate photometric distances to all stars, accurate to ~ 20 %, and combine them with the proper motions to derive tangential velocities for this kinematically unbiased sample of stars. Based on a statistical de-projection method we then derive the vertical profiles (to heights of Z = 800 pc above the disk plane) for the first and second moments of the three dimensional stellar velocity distribution. We find that <W> = -7 +/- 1 km/s and <U> = -9 +/- 1 km/s, independent of height above the mid-plane, reflecting the Suns motion with respect to the local standard of rest. In contrast, <V> changes distinctly from -20 +/- 2 km/s in the mid-plane to <V> = -32 km/s at Z = 800 pc, reflecting an asymmetric drift of the stellar mean velocity that increases with height. All three components of the M-star velocity dispersion show a strong linear rise away from the mid-plane, most notably sigma_{ZZ}, which grows from 18 km/s (Z = 0) to 40 km/s (at Z = 800 pc). We determine the orientation of the velocity ellipsoid, and find a significant vertex deviation of 20 to 25 degrees, which decreases only slightly to heights of Z = 800 pc. Away from the mid-plane, our sample exhibits a remarkably large tilt of the velocity ellipsoid towards the Galactic plane, which reaches 20 deg. at Z = 800 pc and which is not easily explained. Finally, we determine the ratio sigma^2_{phiphi}/sigma^2_{RR} near the mid-plane, which in the epicyclic approximation implies an almost perfectly flat rotation curve at the Solar radius.
The frequency of maximum oscillation power measured in dwarfs and giants exhibiting solar-like pulsations provides a precise, and potentially accurate, inference of the stellar surface gravity. An extensive comparison for about 40 well-studied pulsat
We present an empirical method to measure the halo mass function (HMF) of galaxies. We determine the relation between the hi line-width from single-dish observations and the dark matter halo mass ($M_{200}$) inferred from rotation curve fits in the S
It has been often suggested that a tangible relation exists between relativistic jets in active galactic nuclei (AGN) and the morphology of their host galaxies. In particular, relativistic jets may commonly be related to merging events. Here we prese
We report on the first asteroseismic analysis of solar-type stars observed by Kepler. Observations of three G-type stars, made at one-minute cadence during the first 33.5d of science operations, reveal high signal-to-noise solar-like oscillation spec
We derive ages, metallicities, and individual element abundances of early- and late-type galaxies (ETGs and LTGs) out to 1.5 R$_e$. We study a large sample of 1900 galaxies spanning $8.6 - 11.3 log M/M_{odot}$ in stellar mass, through key absorption