ﻻ يوجد ملخص باللغة العربية
The emission intensity of diamond samples containing nitrogen-vacancy centres are measured as a function of magnetic field along a <111> direction for various temperatures. At low temperatures the responses are sample and stress dependent and can be modeled in terms of the previous understanding of the 3E excited state fine structure which is strain dependent. At room temperature the responses are largely sample and stress independent, and modeling involves invoking a strain independent excited state with a single zero field splitting of 1.42 GHz. The change in behaviour is attributed to a temperature dependent averaging process over the components of the excited state orbital doublet. It decouples orbit and spin and at high temperature the spin levels become independent of any orbit splitting. Thus the models can be reconciled and the parameters for low and high temperatures are shown to be consistent.
The nitrogen-vacancy (NV) colour centre in diamond is an important physical system for emergent quantum technologies, including quantum metrology, information processing and communications, as well as for various nanotechnologies, such as biological
Optical and microwave double resonance techniques are used to obtain the excited state structure of single nitrogen-vacancy centers in diamond. The excited state is an orbital doublet and it is shown that it can be split and associated transition str
The optical transition linewidth and emission polarization of single nitrogen-vacancy (NV) centers are measured from 5 K to room temperature. Inter-excited state population relaxation is shown to broaden the zero-phonon line and both the relaxation a
Symmetry considerations are used in presenting a model of the electronic structure and the associated dynamics of the nitrogen-vacancy center in diamond. The model accounts for the occurrence of optically induced spin polarization, for the change of
The photophysics and charge state dynamics of the nitrogen vacancy (NV) center in diamond has been extensively investigated but is still not fully understood. In contrast to previous work, we find that NV$^{0}$ converts to NV$^{-}$ under excitation w