ﻻ يوجد ملخص باللغة العربية
he triple asteroidal system (87) Sylvia is composed of a 280-km primary and two small moonlets named Romulus and Remus (Marchis et al 2005). Sylvia is located in the main asteroid belt. The satellites are in nearly equatorial circular orbits around the primary. In the present work we study the stability of the satellites Romulus and Remus, in order to identify the effects and the contribution of each perturber. The results from the 3-body problem, Sylvia-Romulus-Remus, show no significant variation of their orbital elements. However, the inclinations of the satellites present a long period evolution, when the Sun is included in the system. Such amplitude is amplified when Jupiter is included. An analysis of these results show that Romulus and Remus are librating in a secular resonance and their longitude of the nodes are locked to each other. The satellites get caught in an evection resonance with Jupiter. However, the orbital evolutions of the satellites became completely stable when the oblateness of Sylvia is included in the simulations.
We study the stability of the (87) Sylvia system and of the neighborhood of its two satellites. We use numerical integrations considering the non-sphericity of Sylvia, as well as the mutual perturbation of the satellites and the solar perturbation. T
The star BD+29 1748 was resolved to be a close binary from its occultation by the asteroid 87 Sylvia on 2006 December 18 UT. Four telescopes were used to observe this event at two sites separated by some 80 km apart. Two flux drops were observed at o
In this work, we study the dynamics of particles around Bennu. The goal is to understand the stability, evolution, and final outcome of the simulated particles around the asteroid. According to the results, the particle sizes can be divided into two
The arrival of the robustly hyperbolic asteroid A/2017 U1 has potentially interesting ramifications for the planet-formation process. Although extrapolations from a sample size of one are necessarily uncertain, order-of-magnitude estimates suggest th
In this work we have estimated 10 collisional ages of 9 families for which for different reasons our previous attempts failed. In general, these are difficult cases that required dedicated effort, such as a new family classifications for asteroids in