ترغب بنشر مسار تعليمي؟ اضغط هنا

Sh2-205: II. Its quiescent stellar formation activity

84   0   0.0 ( 0 )
 نشر من قبل Gisela Romero G.A.R
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G.A. Romero




اسأل ChatGPT حول البحث

We present a study of active stellar forming regions in the environs of the HII region Sh2-205. The analysis is based on data obtained from point source catalogues and images extracted from 2MASS, MSX, and IRAS surveys. Complementary data are taken from CO survey. The identification of primary candidates to stellar formation activity is made following colour criteria and the correlation with molecular gas emission. A number of stellar formation tracer candidates are projected on two substructures of the HII region: SH148.83-0.67 and SH149.25-0.00. However, the lack of molecular gas related to these structures casts doubts on the nature of the sources. Additional infrared sources may be associated with the HI shell centered at (l,b) = (149degr 0arcmin, -1degr 30arcmin). The most striking active area was found in connection to the HII region LBN 148.11-0.45, where stellar formation candidates are projected onto molecular gas. The analytical model to the collect and collapse process shows that stellar formation activity could have been triggered by the expansion of this HII region.



قيم البحث

اقرأ أيضاً

We present a study of the HII region Sh2-205 and its environs, based on data obtained from the CGPS, 12CO observations, and MSX data. We find that Sh2-205 can be separated in three independent optical structures: SH 149.25-0.0, SH 148.83-0.67, and LB N 148.11-0.45. The derived spectral indices show the thermal nature of SH 148.83-0.67 and LBN 148.11-0.45. The morphology of SH 148.83-0.67, both in the optical and radio data, along with the energetic requ irements indicate that this feature is an interstellar bubble powered by the UV photons of HD 24431 (O9 III). LBN 148.11-0.45 has the morphology of a classic al HII region and their ionizing sources remain uncertain. Dust and molecular gas are found related to LBN 148.11-0.45.Particularly, a photodissociation region is detected at the interface between the ionized and molecular regions. If the proposed exciting star HD 24094 were an O8--O9 type star, as suggested by its near-infrared colors, its UV photon flux would be enough to explain the ionization of the nebula. The optical, radio continuum, and 21-cm line data allow us to conclude that SH 148.83-0.67 is an interstellar bubble powered by the energetic action of HD 24431. The associated neutral atomic and ionized masses are 180 Mo and 300 Mo, respectively. The emission of SH 149.25-0.0 is too faint to derive the dust and gas parameters. An HI shell centered at (l,b) = (149.0, 1.5) was also identified. It correlates morphologically with molecular gas emission. The neutral atomic and molecular masses are 1600 Mo and 2.6 x 10^4 Mo, respectively. The open cluster NGC 1444 is the most probable responsible for shaping this HI structure.
We present here identification and characterization of the young stellar population associated with an active star-forming site Sh2-242. We used our own new optical imaging and spectroscopic observational data, as well as several archival catalogs, e .g., Pan-STARRS 1, $Gaia$ DR2, IPHAS, WIRCam, 2MASS, and $Spitzer$. Slit spectroscopic results confirm the classification of the main ionizing source BD+26 980 as an early-type star of spectral type B0.5 V. The spectrophotometric distance of the star is estimated as 2.08 $pm$ 0.24 kpc, which confirms the source as a member of the cluster. An extinction map covering a large area (diameter $sim$ 50) is generated with $H$ and $K$ photometry toward the region. From the map, three distinct locations of peak extinction complexes ($A_{V}$ $simeq$ 7$-$17 mag) are identified for the very first time. Using the infrared color excess, a total of 33 Class I and 137 Class II young objects are classified within the region. The IPHAS photometry reveals classification of 36 H$alpha$ emitting sources, which might be class II objects. Among 36 H$alpha$ emitting sources, 5 are already identified using infrared excess emission. In total, 201 young objects are classified toward S242 from this study. The membership status of the young sources is further windowed with the inclusion of parallax from the $Gaia$ DR2 catalog. Using the optical and infrared color-magnitude diagrams, the young stellar objects are characterized with an average age of $sim$ 1 Myr and the masses in the range 0.1$-$3.0 $M_odot$. The census of the stellar content within the region is discussed using combined photometric and spectroscopic data.
Selecting centrally quiescent galaxies from the Sloan Digital Sky Survey (SDSS) to create high signal-to-noise (>100) stacked spectra with minimal emission line contamination, we accurately and precisely model the central stellar populations of barre d and unbarred quiescent disk galaxies. By splitting our sample by redshift, we can use the fixed size of the SDSS fiber to model the stellar populations at different radii within galaxies. At 0.02<z<0.04, the SDSS fiber radius corresponds to ~1 kpc, which is the typical half-light radii of both classical bulges and disky pseudobulges. Assuming that the SDSS fiber primarily covers the bulges at these redshifts, our analysis shows that there are no significant differences in the stellar populations, i.e., stellar age, [Fe/H], [Mg/Fe], and [N/Fe], of the bulges of barred vs. unbarred quiescent disk galaxies. Modeling the stellar populations at different redshift intervals from z=0.020 to z=0.085 at fixed stellar masses produces an estimate of the stellar population gradients out to about half the typical effective radius of our sample, assuming null evolution over this ~1 Gyr epoch. We find that there are no noticeable differences in the slopes of the azimuthally averaged gradients of barred vs. unbarred quiescent disk galaxies. These results suggest that bars are not a strong influence on the chemical evolution of quiescent disk galaxies.
We report the observational findings of the Sh2-112 H{sc ii} region by using the multiwavelength data analysis ranging from optical to radio wavelengths. This region is powered by a massive O8V-type star BD +45 3216. The surface density distribution and minimum spanning tree analyses of the young stellar object (YSO) candidates in the region reveal their groupings toward the western periphery of the H{sc ii} region. A GMRT radio continuum emission peak is found toward the north-west boundary of the H{sc ii} region and is investigated as a compact/ultra-compact H{sc ii} region candidate powered by a B0-B0.5 type star. Toward the south-west direction, a prominent curved rim-like structure is found in the H$alpha$ image and GMRT radio continuum maps, where the H$_2$ and $^{13}$CO emission is also observed. These results suggest the existence of the ionized boundary layer (IBL) on the surface of the molecular cloud. This IBL is found to be over-pressurized with respect to the internal pressure of the surrounding molecular cloud. This implies that the shocks are propagating/ propagated into the molecular cloud and the young stars identified within it are likely triggered due to the massive star. It is also found that this region is ionization bounded toward the west-direction and density bounded toward the east-direction. Based on the distribution of the ionized gas, molecular material, and the YSO candidates; we propose that the Sh2-112 H{sc ii} region is a good candidate for the blister-type H{sc ii} region which has been evolved on the surface of a cylindrical molecular cloud.
We present high resolution [NII] 205 micrometer ^3P_1-^3P_0 spectra obtained with Herschel-HIFI towards a small sample of far-infrared bright star forming regions in the Galactic plane: W31C (G10.6-0.4), W49N (G43.2-0.1), W51 (G49.5-0.4), and G34.3+0 .1. All sources display an emission line profile associated directly with the HII regions themselves. For the first time we also detect absorption of the [NII] 205 micrometer line by extended low-density foreground material towards W31C and W49N over a wide range of velocities. We attribute this absorption to the warm ionised medium (WIM) and find N(N^+)approx 1.5x10^17 cm^-2 towards both sources. This is in agreement with recent Herschel-HIFI observations of [CII] 158 micrometer, also observed in absorption in the same sight-lines, if approx7-10 % of all C^+ ions exist in the WIM on average. Using an abundance ratio of [N]/[H] = 6.76x10^-5 in the gas phase we find that the mean electron and proton volume densities are ~0.1-0.3 cm^-3 assuming a WIM volume filling fraction of 0.1-0.4 with a corresponding line-of-sight filling fraction of 0.46-0.74. A low density and a high WIM filling fraction are also supported by RADEX modelling of the [NII] 205 micrometer absorption and emission together with visible emission lines attributed mainly to the WIM. The detection of the 205 micrometer line in absorption emphasises the importance of a high spectral resolution, and also offers a new tool for investigation of the WIM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا