ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic order in Graphite: Experimental evidence, intrinsic and extrinsic difficulties

114   0   0.0 ( 0 )
 نشر من قبل Pablo D. Esquinazi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss recently obtained data using different experimental methods including magnetoresistance measurements that indicate the existence of metal-free high-temperature magnetic order in graphite. Intrinsic as well as extrinsic difficulties to trigger magnetic order by irradiation of graphite are discussed in view of recently published theoretical work.



قيم البحث

اقرأ أيضاً

We have prepared magnetic graphite samples bombarded by protons at low temperatures and low fluences to attenuate the large thermal annealing produced during irradiation. An overall optimization of sample handling allowed us to find Curie temperature s $ T_c gtrsim 350$ K at the used fluences. The magnetization versus temperature shows unequivocally a linear dependence, which can be interpreted as due to excitations of spin waves in a two dimensional Heisenberg model with a weak uniaxial anisotropy.
The interface between the insulators LaAlO$_3$ and SrTiO$_3$ accommodates a two-dimensional electron liquid (2DEL) -- a high mobility electron system exhibiting superconductivity as well as indications of magnetism and correlations. While this flagsh ip oxide heterostructure shows promise for electronics applications, the origin and microscopic properties of the 2DEL remain unclear. The uncertainty remains in part because the electronic structures of such nanoscale buried interfaces are difficult to probe, and is compounded by the variable presence of oxygen vacancies and coexistence of both localized and delocalized charges. These various complications have precluded decisive tests of intrinsic electronic and orbital reconstruction at this interface. Here we overcome prior difficulties by developing an interface analysis based on the inherently interface-sensitive resonant x-ray reflectometry. We discover a high charge density of 0.5 electrons per interfacial unit cell for samples above the critical LaAlO$_3$ thickness, and extract the depth dependence of both the orbital and electronic reconstructions near the buried interface. We find that the majority of the reconstruction phenomena are confined to within 2 unit cells of the interface, and we quantify how oxygen vacancies significantly affect the electronic system. Our results provide strong support for the existence of polarity induced electronic reconstruction, clearly separating its effects from those of oxygen vacancies.
315 - M. Pregelj , A. Zorko , O. Zaharko 2012
An incommensurate elliptical helical magnetic structure in the frustrated coupled-spin-chain system FeTe2O5Br is surprisingly found to persist down to 53(3) mK (T/T_N ~ 1/200), according to neutron scattering and muon spin relaxation. In this state, finite spin fluctuations at T -> 0 are evidenced by muon depolarization, which is in agreement with specific-heat data indicating the presence of both gapless and gapped excitations. We thus show that the amplitude-modulated magnetic order intrinsically accommodates contradictory persistent spin dynamics and long-range order and can serve as a model structure to investigate their coexistence.
We studied the (001/2) diffraction peak in the low-temperature phase of magnetite (Fe3O4) using resonant soft x-ray diffraction (RSXD) at the Fe-L2,3 and O-K resonance. We studied both molecular-beam-epitaxy (MBE) grown thin films and in-situ cleaved single crystals. From the comparison we have been able to determine quantitatively the contribution of intrinsic absorption effects, thereby arriving at a consistent result for the (001/2) diffraction peak spectrum. Our data also allow for the identification of extrinsic effects, e.g. for a detailed modeling of the spectra in case a dead surface layer is present that is only absorbing photons but does not contribute to the scattering signal.
Strong magnetic field induces at least two phase transitions in graphite beyond the quantum limit where many-body effects are expected. We report on a study using a state-of-the-art non-destructive magnet allowing to attain 90.5 T at 1.4 K, which rev eals a new field-induced phase and evidence that the insulating state destroyed at 75 T is an excitonic condensate of electron-hole pairs. By monitoring the angle dependence of in-plane and out-of-plane magnetoresistance, we distinguish between the role of cyclotron and Zeeman energies in driving various phase transitions. We find that, with the notable exception of the transition field separating the two insulating states, the threshold magnetic field for all other transitions display an exact cosine angular dependence. Remarkably, the threshold field for the destruction of the second insulator (phase B) is temperature-independent with no detectable Landau-level crossing nearby. We conclude that the field-induced insulator starts as a weak-coupling spin-density-wave, but ends as a strong-coupling excitonic insulator of spin-polarized electron-hole pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا