ﻻ يوجد ملخص باللغة العربية
Measuring the transport of electrons through a graphene sheet necessarily involves contacting it with metal electrodes. We study the adsorption of graphene on metal substrates using first-principles calculations at the level of density functional theory. The bonding of graphene to Al, Ag, Cu, Au and Pt(111) surfaces is so weak that its unique ultrarelativistic electronic structure is preserved. The interaction does, however, lead to a charge transfer that shifts the Fermi level by up to 0.5 eV with respect to the conical points. The crossover from p-type to n-type doping occurs for a metal with a work function ~5.4 eV, a value much larger than the work function of free-standing graphene, 4.5 eV. We develop a simple analytical model that describes the Fermi level shift in graphene in terms of the metal substrate work function. Graphene interacts with and binds more strongly to Co, Ni, Pd and Ti. This chemisorption involves hybridization between graphene $p_z$-states and metal d-states that opens a band gap in graphene. The graphene work function is as a result reduced considerably. In a current-in-plane device geometry this should lead to n-type doping of graphene.
It is important to understand the electronic interaction between single-walled carbon nanotubes (SWNTs) and graphene in order to use them efficiently in multifunctional hybrid devices. Here we deposited SWNT bundles on graphene-covered copper and SiO
In a recent preprint Kong et al, arXiv:0902.0642v1 (2009) claimed to calculate the lattice thermal conductivity of single and bi-layer graphene from first principles. The main findings were that the Umklapp-limited thermal conductivity is only slight
Different stoichiometric configurations of graphane and graphene fluoride are investigated within density functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various c
Electron-phonon ($e$-ph) interactions are key to understanding the dynamics of electrons in materials, and can be modeled accurately from first-principles. However, when electrons and holes form Coulomb-bound states (excitons), quantifying their inte
Motivated by the recent realization of graphene sensors to detect individual gas molecules, we investigate the adsorption of H2O, NH3, CO, NO2, and NO on a graphene substrate using first-principles calculations. The optimal adsorption position and or