ترغب بنشر مسار تعليمي؟ اضغط هنا

2MASS J06164006-6407194: The First Outer Halo L Subdwarf

104   0   0.0 ( 0 )
 نشر من قبل Michael Cushing
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the serendipitous discovery of an L subdwarf, 2MASS J06164006-6407194, in a search of the Two Micron All Sky Survey for T dwarfs. Its spectrum exhibits features indicative of both a cool and metal poor atmosphere including a heavily pressured-broadened K I resonant doublet, Cs I and Rb I lines, molecular bands of CaH, TiO, CrH, FeH, and H2O, and enhanced collision induced absorption of H2. We assign 2MASS 0616-6407 a spectral type of sdL5 based on a comparison of its red optical spectrum to that of near solar-metallicity L dwarfs. Its high proper motion (mu =1.405+-0.008 arcsec yr-1), large radial velocity (Vrad = 454+-15 km s-1), estimated uvw velocities (94, -573, 125) km s-1 and Galactic orbit with an apogalacticon at ~29 kpc are indicative of membership in the outer halo making 2MASS 0616-6407 the first ultracool member of this population.

قيم البحث

اقرأ أيضاً

We present the discovery of the first L-type subdwarf, 2MASS J05325346+8246465. This object exhibits enhanced collision-induced H$_2$ absorption, resulting in blue NIR colors ($J-K_s = 0.26{pm}0.16$). In addition, strong hydride bands in the red opti cal and NIR, weak TiO absorption, and an optical/J-band spectral morphology similar to the L7 DENIS 0205$-$1159AB imply a cool, metal-deficient atmosphere. We find that 2MASS 0532+8246 has both a high proper motion, $mu$ = 2$farcs60pm0farcs$15 yr$^{-1}$, and a substantial radial velocity, $v_{rad} = -195{pm}11$ km s$^{-1}$, and its probable proximity to the Sun (d = 10--30 pc) is consistent with halo membership. Comparison to subsolar-metallicity evolutionary models strongly suggests that 2MASS 0532+8246 is substellar, with a mass of 0.077 $lesssim$ M $lesssim$ 0.085 M$_{sun}$ for ages 10--15 Gyr and metallicities $Z = 0.1-0.01$ $Z_{sun}$. The discovery of this object clearly indicates that star formation occurred below the Hydrogen burning mass limit at early times, consistent with prior results indicating a flat or slightly rising mass function for the lowest-mass stellar subdwarfs. Furthermore, 2MASS 0532+8246 serves as a prototype for a new spectral class of subdwarfs, additional examples of which could be found in NIR proper motion surveys.
L dwarfs exhibit low-level, rotationally-modulated photometric variability generally associated with heterogeneous, cloud-covered atmospheres. The spectral character of these variations yields insight into the particle sizes and vertical structure of the clouds. Here we present the results of a high precision, ground-based, near-infrared, spectral monitoring study of two mid-type L dwarfs that have variability reported in the literature, 2MASS J08354256-0819237 and 2MASS J18212815+1414010, using the SpeX instrument on the Infrared Telescope Facility. By simultaneously observing a nearby reference star, we achieve <0.15% per-band sensitivity in relative brightness changes across the 0.9--2.4um bandwidth. We find that 2MASS J0835-0819 exhibits marginal (< ~0.5% per band) variability with no clear spectral dependence, while 2MASS J1821+1414 varies by up to +/-1.5% at 0.9 um, with the variability amplitude declining toward longer wavelengths. The latter result extends the variability trend observed in prior HST/WFC3 spectral monitoring of 2MASS J1821+1414, and we show that the full 0.9-2.4 um variability amplitude spectrum can be reproduced by Mie extinction from dust particles with a log-normal particle size distribution with a median radius of 0.24 um. We do not detect statistically significant phase variations with wavelength. The different variability behavior of 2MASS J0835-0819 and 2MASS J1821+1414 suggests dependencies on viewing angle and/or overall cloud content, underlying factors that can be examined through a broader survey.
We have conducted a survey of candidate hot subdwarf stars in the southern sky searching for fast transits, eclipses, and sinusoidal like variability in the Evryscope light curves. The survey aims to detect transit signals from Neptune size planets t o gas-giants, and eclipses from M-dwarfs and brown dwarfs. The other variability signals are primarily expected to be from compact binaries and reflection effect binaries. Due to the small size of hot subdwarfs, transit and eclipse signals are expected to last only twenty minutes, but with large signal depths (up to completely eclipsing if the orientation is edge on). With its 2-minute cadence and continuous observing Evryscope is well placed to recover these fast transits and eclipses. The very large field of view (8150 sq. deg.) is critical to obtain enough hot subdwarf targets, despite their rarity. We identified 11,000 potential hot subdwarfs from the 9.3M Evryscope light curves for sources brighter than mg = 15. With our machine learning spectral classifier, we flagged high-confidence targets and estimate the total hot subdwarfs in the survey to be 1400. The light curve search detected three planet transit candidates, shown to have stellar companions from followup analysis. We discovered several new compact binaries (including two with unseen degenerate companions, and several others with potentially rare secondaries), two eclipsing binaries with M-dwarf companions, as well as new reflection effect binaries and others with sinusoidal like variability. The hot subdwarf discoveries identified here are spectroscopically confirmed and we verified the Evryscope discovery light curve with TESS light curves when available. Four of the discoveries are in the process of being published in separate followup papers, and we discuss the followup potential of several of the other discoveries.
We report the discovery of the first short period binary in which a hot subdwarf star (sdOB) fills its Roche lobe and started mass transfer to its companion. The object was discovered as part of a dedicated high-cadence survey of the Galactic Plane n amed the Zwicky Transient Facility and exhibits a period of $P_{rm orb}=39.3401(1)$ min, making it the most compact hot subdwarf binary currently known. Spectroscopic observations are consistent with an intermediate He-sdOB star with an effective temperature of $T_{rm eff}=42,400pm300$ K and a surface gravity of $log(g)=5.77pm0.05$. A high-signal-to noise GTC+HiPERCAM light curve is dominated by the ellipsoidal deformation of the sdOB star and an eclipse of the sdOB by an accretion disk. We infer a low-mass hot subdwarf donor with a mass $M_{rm sdOB}=0.337pm0.015$ M$_odot$ and a white dwarf accretor with a mass $M_{rm WD}=0.545pm0.020$ M$_odot$. Theoretical binary modeling indicates the hot subdwarf formed during a common envelope phase when a $2.5-2.8$ M$_odot$ star lost its envelope when crossing the Hertzsprung Gap. To match its current $P_{rm orb}$, $T_{rm eff}$, $log(g)$, and masses, we estimate a post-common envelope period of $P_{rm orb}approx150$ min, and find the sdOB star is currently undergoing hydrogen shell burning. We estimate that the hot subdwarf will become a white dwarf with a thick helium layer of $approx0.1$ M$_odot$ and will merge with its carbon/oxygen white dwarf companion after $approx17$ Myr and presumably explode as a thermonuclear supernova or form an R CrB star.
In 2007, a companion with planetary mass was found around the pulsating subdwarf B star V391 Pegasi with the timing method, indicating that a previously undiscovered population of substellar companions to apparently single subdwarf B stars might exis t. Following this serendipitous discovery, the EXOTIME (http://www.na.astro.it/~silvotti/exotime/) monitoring program has been set up to follow the pulsations of a number of selected rapidly pulsating subdwarf B stars on time-scales of several years with two immediate observational goals: 1) determine Pdot of the pulsational periods P 2) search for signatures of substellar companions in O-C residuals due to periodic light travel time variations, which would be tracking the central stars companion-induced wobble around the center of mass. These sets of data should therefore at the same time: on the one hand be useful to provide extra constraints for classical asteroseismological exercises from the Pdot (comparison with local evolutionary models), and on the other hand allow to investigate the preceding evolution of a target in terms of possible binary evolution by extending the otherwise unsuccessful search for companions to potentially very low masses. While timing pulsations may be an observationally expensive method to search for companions, it samples a different range of orbital parameters, inaccessible through orbital photometric effects or the radial velocity method: the latter favours massive close-in companions, whereas the timing method becomes increasingly more sensitive towards wider separations. In this paper we report on the status of the on-going observations and coherence analysis for two of the currently five targets, revealing very well-behaved pulsational characteristics in HS 0444+0458, while showing HS 0702+6043 to be more complex than previously thought.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا