ترغب بنشر مسار تعليمي؟ اضغط هنا

Star Formation Around the Youngest Supernova Remnants in the Large Magellanic Cloud: Implications for Type Ia Supernova Progenitors

94   0   0.0 ( 0 )
 نشر من قبل Carles Badenes
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the star formation history map of the Large Magellanic Cloud recently published by Harris & Zaritsky to study the sites of the youngest Type Ia supernova remnants. We find that most Type Ia remnants are associated with old, metal-poor stellar populations, with little or no recent star formation. These include SNR 0509-67.5 which is known to have been originated by an extremely bright SN 1991T-like event, and yet is located very far away from any star forming regions. The Type Ia remnant SNR N103B, however, is associated with vigorous star formation activity in the last 100 Myr, and might have had a relatively younger and more massive progenitor.

قيم البحث

اقرأ أيضاً

304 - K. M. Desai 2010
It has often been suggested that supernova remnants (SNRs) can trigger star formation. To investigate the relationship between SNRs and star formation, we have examined the known sample of 45 SNRs in the Large Magellanic Cloud to search for associate d young stellar objects (YSOs) and molecular clouds. We find seven SNRs associated with both YSOs and molecular clouds, three SNRs associated with YSOs but not molecular clouds, and eight SNRs near molecular clouds but not associated with YSOs. Among the 10 SNRs associated with YSOs, the association between the YSOs and SNRs can be either rejected or cannot be convincingly established for eight cases. Only two SNRs have YSOs closely aligned along their rims; however, the time elapsed since the SNR began to interact with the YSOs natal clouds is much shorter than the contraction timescales of the YSOs, and thus we do not see any evidence of SNR-triggered star formation in the LMC. The 15 SNRs that are near molecular clouds may trigger star formation in the future when the SNR shocks have slowed down to <45 km/s. We discuss how SNRs can alter the physical properties and abundances of YSOs.
We present first results from an extensive survey of Magellanic Clouds supernova remnants (SNRs) with the Spitzer Space Telescope. We describe IRAC and MIPS imaging observations at 3.6, 4.5, 5.8, 8, 24, and 70 microns of four Balmer-dominated Type Ia SNRs in the Large Magellanic Cloud (LMC): DEM L71 (0505-67.9), 0509--67.5, 0519--69.0, and 0548-70.4. None was detected in the four short-wavelength IRAC bands, but all four were clearly imaged at 24 microns, and two at 70 microns. A comparison of these images to Chandra broadband X-ray images shows a clear association with the blast wave, and not with internal X-ray emission associated with ejecta. Our observations are well described by 1-D shock models of collisionally heated dust emission, including grain size distributions appropriate for the LMC, grain heating by collisions with both ions and electrons, and sputtering of small grains. Model parameters are constrained by X-ray, optical, and far-ultraviolet observations. Our models can reproduce observed 70/24 micron flux ratios only by including sputtering, destroying most grains smaller than 0.03-0.04 microns in radius. We infer total dust masses swept up by the SNR blast waves, before sputtering, of order 0.01 solar masses, several times less than those implied by a dust/gas mass ratio of 0.3 percent as often assumed for the LMC. Substantial dust destruction has implications for gas-phase abundances.
We present a new optical sample of three Supernova Remnants and 16 Supernova Remnant (SNR) candidates in the Large Magellanic Cloud(LMC). These objects were originally selected using deep H$alpha$, [SII] and [OIII] narrow-band imaging. Most of the ne wly found objects are located in less dense regions, near or around the edges of the LMCs main body. Together with previously suggested MCSNR J0541-6659, we confirm the SNR nature for two additional new objects: MCSNR J0522-6740 and MCSNRJ0542-7104. Spectroscopic follow-up observations for 12 of the LMC objects confirm high [SII]/H$alpha$ a emission-line ratios ranging from 0.5 to 1.1. We consider the candidate J0509-6402 to be a special example of the remnant of a possible Type Ia Supernova which is situated some 2$^circ$ ($sim 1.75$kpc) north from the main body of the LMC. We also find that the SNR candidates in our sample are significantly larger in size than the currently known LMC SNRs by a factor of $sim 2$. This could potentially imply that we are discovering a previously unknown but predicted, older class of large LMC SNRs that are only visible optically. Finally, we suggest that most of these LMC SNRs are residing in a very rarefied environment towards the end of their evolutionary span where they become less visible to radio and X-ray telescopes.
We have used two methods to search for surviving companions of Type Ia supernova progenitors in three Balmer-dominated supernova remnants (SNRs) in the Large Magellanic Cloud: 0519-69.0, 0505-67.9 (DEM L71), and 0548-70.4. In the first method, we use the Hubble Space Telescope photometric measurements of stars to construct color-magnitude diagrams (CMDs), and compare positions of stars in the CMDs with those expected from theoretical post-impact evolution of surviving main sequence or helium star companions. No obvious candidates of surviving companion are identified in this photometric search. Future models for surviving red giant companions or with different explosion mechanisms are needed for thorough comparisons with these observations in order to make more definitive conclusions. In the second method, we use Multi-Unit Spectroscopic Explorer (MUSE) observations of 0519-69.0 and DEM L71 to carry out spectroscopic analyses of stars in order to use large peculiar radial velocities as diagnostics of surviving companions. We find a star in 0519-69.0 and a star in DEM L71 moving at radial velocities of 182 $pm$ 0 km s$^{-1}$ and 213 $pm$ 0 km s$^{-1}$, more than 2.5$sigma$ from the mean radial velocity of the underlying stellar population, 264 km s$^{-1}$ and 270 km s$^{-1}$, respectively. These stars need higher-quality spectra to investigate their abundances and rotation velocities to determine whether they are indeed surviving companions of the SN progenitors.
Models for the progenitor systems of Type Ia supernovae can be divided into double-degenerate systems, which contain two white dwarfs, and single-degenerate systems, which contain one white dwarf plus one companion star (either a red giant, a subgian t, or a >1.16 M_sol main sequence star). The white dwarf is destroyed in the supernova explosion, but any non-degenerate companion remains intact. We present the results of a search for an ex-companion star in SNR 0519-69.0, located in the Large Magellanic Cloud, based on images taken with the Hubble Space Telescope with a limiting magnitude of V = 26.05. SNR 0519-69.0 is confidently known to be from a Type Ia supernova based on its light echoes and X-ray spectra. The geometric center of the remnant (based on the H-alpha and X-ray shell) is at 05:19:34.83, -69:02:06.92 (J2000). Accounting for the measurement uncertainties, the orbital velocity, and the kick velocity, any ex-companion star must be within 4.7 of this position at the 99.73% confidence level. This circle contains 27 main sequence stars brighter than V = 22.7, any one of which could be the ex-companion star left over from a supersoft source progenitor system. The circle contains no post-main sequence stars, and this rules out the possibility of all other published single-degenerate progenitor classes (including symbiotic stars, recurrent novae, helium donors, and the spin-up/spin-down models) for this particular supernova. The only remaining possibility is that SNR 0519-69.0 was formed from either a supersoft source or a double-degenerate progenitor system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا