ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous properties of the acoustic excitations in glasses on the mesoscopic length-scale

104   0   0.0 ( 0 )
 نشر من قبل Stefano Mossa
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The low-temperature thermal properties of dielectric crystals are governed by acoustic excitations with large wavelengths that are well described by plane waves. This is the Debye model, which rests on the assumption that the medium is an elastic continuum, holds true for acoustic wavelengths large on the microscopic scale fixed by the interatomic spacing, and gradually breaks down on approaching it. Glasses are characterized as well by universal low-temperature thermal properties, that are however anomalous with respect to those of the corresponding crystalline phases. Related universal anomalies also appear in the low-frequency vibrational density of states and, despite of a longstanding debate, still remain poorly understood. Using molecular dynamics simulations of a model monatomic glass of extremely large size, we show that in glasses the structural disorder undermines the Debye model in a subtle way: the elastic continuum approximation for the acoustic excitations breaks down abruptly on the mesoscopic, medium-range-order length-scale of about ten interatomic spacings, where it still works well for the corresponding crystalline systems. On this scale, the sound velocity shows a marked reduction with respect to the macroscopic value. This turns out to be closely related to the universal excess over the Debye model prediction found in glasses at frequencies of ~1 THz in the vibrational density of states or at temperatures of ~10 K in the specific heat.



قيم البحث

اقرأ أيضاً

Disordered systems show deviations from the standard Debye theory of specific heat at low temperatures. These deviations are often attributed to two-level systems of uncertain origin. We find that a source of excess specific heat comes from correlati ons between quanta of energy if phonon-like excitations are localized on an intermediate length scale. We use simulations of a simplified Creutz model for a system of Ising-like spins coupled to a thermal bath of Einstein-like oscillators. One feature of this model is that energy is quantized in both the system and its bath, ensuring conservation of energy at every step. Another feature is that the exact entropies of both the system and its bath are known at every step, so that their temperatures can be determined independently. We find that there is a mismatch in canonical temperature between the system and its bath. In addition to the usual finite-size effects in the Bose-Einstein and Fermi-Dirac distributions, if excitations in the heat bath are localized on an intermediate length scale, this mismatch is independent of system size up to at least 10^6 particles. We use a model for correlations between quanta of energy to adjust the statistical distributions and yield a thermodynamically consistent temperature. The model includes a chemical potential for units of energy, as is often used for other types of particles that are quantized and conserved. Experimental evidence for this model comes from its ability to characterize the excess specific heat of imperfect crystals at low temperatures.
73 - M.A. Moore , N. Read 2018
The de Almeida-Thouless (AT) line in Ising spin glasses is the phase boundary in the temperature $T$ and magnetic field $h$ plane below which replica symmetry is broken. Using perturbative renormalization group (RG) methods, we show that when the dim ension $d$ of space is just above $6$ there is a multicritical point (MCP) on the AT line, which separates a low-field regime, in which the critical exponents have mean-field values, from a high-field regime where the RG flows run away to infinite coupling strength; as $d$ approaches $6$ from above, the location of the MCP approaches the zero-field critical point exponentially in $1/(d-6)$. Thus on the AT line perturbation theory for the critical properties breaks down at sufficiently large magnetic field even above $6$ dimensions, as well as for all non-zero fields when $dleq 6$ as was known previously. We calculate the exponents at the MCP to first order in $varepsilon=d-6>0$. The fate of the MCP as $d$ increases from just above 6 to infinity is not known.
151 - A.V. Milovanov , A. Iomin 2014
This study is concerned with destruction of Anderson localization by a nonlinearity of the power-law type. We suggest using a nonlinear Schrodinger model with random potential on a lattice that quadratic nonlinearity plays a dynamically very distingu ished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. For super-quadratic nonlinearity the borderline spreading corresponds to diffusion processes on finite clusters. We have proposed an analytical method to predict and explain such transport processes. Our method uses a topological approximation of the nonlinear Anderson model and, if the exponent of the power nonlinearity is either integer or half-integer, will yield the wanted value of the transport exponent via a triangulation procedure in an Euclidean mapping space. A kinetic picture of the transport arising from these investigations uses a fractional extension of the diffusion equation to fractional derivatives over the time, signifying non-Markovian dynamics with algebraically decaying time correlations.
The existence of a constant density of two-level systems (TLS) was proposed as the basis of some intriguing universal aspects of glasses at ultra-low temperatures. Here we ask whether their existence is necessary for explaining the universal density of states quasi-localized modes (QLM) in glasses at ultra-low temperatures. A careful examination of the QLM that exist in a generic atomistic model of a glass former reveals at least two types of them, each exhibiting a different density of states, one depending on the frequency as $omega^3$ and the other as $omega^4$. The properties of the glassy energy landscape that is responsible for the two types of modes is examined here, explaining the analytic feature responsible for the creations of (at least) two families of QLMs. Although adjacent wells certainly exist in the complex energy landscape of glasses, doubt is cast on the relevance of TLS for the universal density of QLMs.
138 - S.L.A. de Queiroz 2005
The behavior of two-dimensional Ising spin glasses at the multicritical point on triangular and honeycomb lattices is investigated, with the help of finite-size scaling and conformal-invariance concepts. We use transfer-matrix methods on long strips to calculate domain-wall energies, uniform susceptibilities, and spin-spin correlation functions. Accurate estimates are provided for the location of the multicritical point on both lattices, which lend strong support to a conjecture recently advanced by Takeda, Sasamoto, and Nishimori. Correlation functions are shown to obey rather strict conformal-invariance requirements, once suitable adaptations are made to account for geometric aspects of the transfer-matrix description of triangular and honeycomb lattices. The universality class of critical behavior upon crossing the ferro-paramagnetic phase boundary is probed, with the following estimates for the associated critical indices: $ u=1.49(2)$, $gamma=2.71(4)$, $eta_1= 0.183(3)$, distinctly different from the percolation values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا