ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrastable lasers based on vibration insensitive cavities

43   0   0.0 ( 0 )
 نشر من قبل Elizabeth English Dr
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present two ultra-stable lasers based on two vibration insensitive cavity designs, one with vertical optical axis geometry, the other horizontal. Ultra-stable cavities are constructed with fused silica mirror substrates, shown to decrease the thermal noise limit, in order to improve the frequency stability over previous designs. Vibration sensitivity components measured are equal to or better than 1.5e-11 per m.s^-2 for each spatial direction, which shows significant improvement over previous studies. We have tested the very low dependence on the position of the cavity support points, in order to establish that our designs eliminate the need for fine tuning to achieve extremely low vibration sensitivity. Relative frequency measurements show that at least one of the stabilized lasers has a stability better than 5.6e-16 at 1 second, which is the best result obtained for this length of cavity.

قيم البحث

اقرأ أيضاً

The vibration sensitivities of optical cavities depending on the support-area were investigated both numerically and experimentally. We performed the numerical simulation with two models; one with total constraint over the support area, and the other with only vertical constraint. A support-area-size insensitive optimal support condition could be found by the numerical simulation. The support-area was determined in the experiment by a Viton rubber pad. The vertical, transverse, and longitudinal vibration sensitivities were measured experimentally. The experimental result agreed with the numerical simulation with a sliding model (only vertical constraint).
We use the three-cornered-hat method to evaluate the absolute frequency stabilities of three different ultrastable reference cavities, one of which has a vibration-insensitive design that does not even require vibration isolation. An Nd:YAG laser and a diode laser are implemented as light sources. We observe $sim1$ Hz beat note linewidths between all three cavities. The measurement demonstrates that the vibration-insensitive cavity has a good frequency stability over the entire measurement time from 100 $mu$s to 200 s. An absolute, correlation-removed Allan deviation of $1.4times10^{-15}$ at 1 s of this cavity is obtained, giving a frequency uncertainty of only 0.44 Hz.
An infrared perfect absorber based on gold nanowire metamaterial cavities array on a gold ground plane is designed. The metamaterial made of gold nanowires embedded in alumina host exhibits an effective permittivity with strong anisotropy, which supp orts cavity resonant modes of both electric dipole and magnetic dipole. The impedance of the cavity modes matches the incident plane wave in free space, leading to nearly perfect light absorption. The incident optical energy is efficiently converted into heat so that the local temperature of the absorber will increase. Simulation results show that the designed metamaterial absorber is polarization-insensitive and nearly omnidirectional for the incident angle.
Hybrid photonic-plasmonic cavities have emerged as a new platform to increase light-matter interaction capable to enhance the Purcell factor in a singular way not attainable with either photonic or plasmonic cavities separately. In the hybrid cavitie s proposed so far, mainly consisting of metallic bow-tie antennas, the plasmonic gap sizes defined by lithography in a repeatable way are limited to minimum values approx 10 nm. Nanoparticle-on-a-mirror (NPoM) cavities are far superior to achieve the smallest possible mode volumes, as gaps smaller than 1 nm can be created. Here, we design a hybrid cavity that combines a NPoM plasmonic cavity and a dielectric-nanobeam photonic crystal cavity operating at transverse-magnetic (TM) polarization. The metallic nanoparticle can be placed very close (< 1 nm) to the upper surface of the dielectric cavity, which acts as a low-reflectivity mirror. We demonstrate through numerical calculations that this kind of hybrid plasmonic-photonic cavity architecture exhibits quality factors, Q, above 10^{3} and normalized mode volumes, V , down to 10^{ um{-3}}, thus resulting in high Purcell factors (FP approx 10^5), whilst being experimentally feasible with current technology. Our results suggest that hybrid cavities with sub-nm gaps should open new avenues for boosting light-matter interaction in nanophotonic systems.
In this work we study a possibility of waveguide fabrication on the basis of active quantum wells in semiconductor lasers. The efficiency of such a waveguide for an InP structure with In0.53Ga0.47As quantum wells is demonstrated experimentally. An optically-pumped laser on this basis is realized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا