ﻻ يوجد ملخص باللغة العربية
In constructions of analytical solutions to open string field theories pure gauge configurations parameterized by wedge states play an essential role. These pure gauge configurations are constructed as perturbation expansions and to guaranty that these configurations are asymptotical solutions to equations of motions one needs to study convergence of the perturbation expansions. We demonstrate that for the large parameter of the perturbation expansion these pure gauge truncated configurations give divergent contributions to the equation of motion on the subspace of the wedge states. We perform this demonstration numerically for the pure gauge configurations related to tachyon solutions for the bosonic and the NS fermionic SFT. By the numerical calculations we also show that the perturbation expansions are cured by adding extra terms. These terms are nothing but the terms necessary to make valued the Sen conjectures.
Recent results on solutions to the equation of motion of the cubic fermionic string field theory and an equivalence of non-polynomial and cubic string field theories are discussed. To have a possibility to deal with both GSO(+) and GSO(-) sectors in
Simple analytic solution to cubic Neveu-Schwarz String Field Theory including the $GSO(-)$ sector is presented. This solution is an analog of the Erler-Schnabl solution for bosonic case and one of the authors solution for the pure $GSO(+)$ case. Gaug
We construct rolling tachyon solutions of open and boundary string field theory (OSFT and BSFT, respectively), in the bosonic and supersymmetric (susy) case. The wildly oscillating solution of susy OSFT is recovered, together with a family of time-de
We classify the spectrum, family structure and stability of Nielsen-Olesen vortices embedded in a larger gauge group when the vacuum manifold is related to a symmetric space.
As an extension of the weak perturbation theory obtained in recent analysis on infinite-derivative non-local non-Abelian gauge theories motivated from p-adic string field theory, and postulated as direction of UV-completion in 4-D Quantum Field Theor