ﻻ يوجد ملخص باللغة العربية
This paper provides an in-depth empirical analysis of several evolutionary algorithms on the one-dimensional spin glass model with power-law interactions. The considered spin glass model provides a mechanism for tuning the effective range of interactions, what makes the problem interesting as an algorithm benchmark. As algorithms, the paper considers the genetic algorithm (GA) with twopoint and uniform crossover, and the hierarchical Bayesian optimization algorithm (hBOA). hBOA is shown to outperform both variants of GA, whereas GA with uniform crossover is shown to perform worst. The differences between the compared algorithms become more significant as the problem size grows and as the range of interactions decreases. Unlike for GA with uniform crossover, for hBOA and GA with twopoint crossover, instances with short-range interactions are shown to be easier. The paper also points out interesting avenues for future research.
One-dimensional quasi-periodic systems with power-law hopping, $1/r^a$, differ from both the standard Aubry-Azbel-Harper (AAH) model and from power-law systems with uncorrelated disorder. Whereas in the AAH model all single-particle states undergo a
We test for the presence or absence of the de Almeida-Thouless line using one-dimensional power-law diluted Heisenberg spin glass model, in which the rms strength of the interactions decays with distance, r as 1/r^{sigma}. It is argued that varying t
We test for the existence of a spin-glass phase transition, the de Almeida-Thouless line, in an externally-applied (random) magnetic field by performing Monte Carlo simulations on a power-law diluted one-dimensional Ising spin glass for very large sy
The transport of excitations between pinned particles in many physical systems may be mapped to single-particle models with power-law hopping, $1/r^a$. For randomly spaced particles, these models present an effective peculiar disorder that leads to s
We have investigated the phase transition in the Heisenberg spin glass using massive numerical simulations to study larger sizes, 48x48x48, than have been attempted before at a spin glass phase transition. A finite-size scaling analysis indicates tha