ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural Origin of the Metal-Insulator Transition of Multiferroic BiFeO3

286   0   0.0 ( 0 )
 نشر من قبل Gustau Catalan
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report X-ray structural studies of the metal-insulator phase transition in bismuth ferrite, BiFeO3, both as a function of temperature and of pressure (931 oC at atmospheric pressure and ca. 45 GPa at ambient temperature). Based on the experimental results, we argue that the metallic gamma-phase is not rhombohedral but is instead the same cubic Pm3m structure whether obtained via high temperature or high pressure, that the MI transition is second order or very nearly so, that this is a band-type transition due to semi-metal band overlap in the cubic phase and not a Mott transition, and that it is primarily structural and not an S=5/2 to S=1/2 high-spin/low-spin electronic transition. Our data are compatible with the orthorhombic Pbnm structure for the beta-phase determined definitively by the neutron scattering study of Arnold et al .[Phys. Rev. Lett. 2009]; the details of this beta-phase had also been controversial, with a remarkable collection of five crystal classes (cubic, tetragonal, orthorhombic, monoclinic, and rhombohedral!) all claimed in recent publications.



قيم البحث

اقرأ أيضاً

Multiferroic BiFeO3 ceramics have been doped with Ca. The smaller ionic size of Ca compared with Bi means that doping acts as a proxy for hydrostatic pressure, at a rate of 1%Ca=0.3GPa. It is also found that the magnetic Neel temperature (TNeel) incr eases as Ca concentration increases, at a rate of 0.66K per 1%Ca (molar). Based on the effect of chemical pressure on TNeel, we argue that applying hydrostatic pressure to pure BiFeO3 can be expected to increase its magnetic transition temperature at a rate around ~2.2K/GPa. The results also suggest that pressure (chemical or hydrostatic) could be used to bring the ferroelectric critical temperature, Tc, and the magnetic TNeel closer together, thereby enhancing magnetoelectric coupling, provided that electrical conductivity can be kept sufficiently low.
We show that epitaxial (001) thin films of multiferroic bismuth ferrite BiFeO3 are monoclinic at room temperature instead of tetragonal or Rhombohedral as reported earlier . We report a orthorhombic order-disorder beta-phase between 820C and 950C con trary to the earlier report. The transition sequence monoclinic-orthorhombic phase in (001)BiFeO3 thin film (rhombohedral-orthorhombic transition in single crystal) resembles that of BaTiO3 or PbSc1/2Ta1/2O3. The transition to the cubic $gamma$-phase causes an abrupt collapse of the bandgap toward zero (insulator-metal transition) at the orthorhombic-cubic beta-gamma transition around 950C. This transition is similar to the metal-insulator transition in Ba0.6K0.4BiO3.
Synchrotron X-ray total scattering studies of structural changes in rutile VO2 at the metal-insulator transition temperature of 340 K reveal that monoclinic and tetragonal phases of VO2 coexist in equilibrium, as expected for a first-order phase tran sition. No evidence for any distinct intermediate phase is seen. Unbiased local structure studies of the changes in V--V distances through the phase transition, using reverse Monte Carlo methods, support the idea of phase coexistence and point to the high degree of correlation in the dimerized low-temperature structure. No evidence for short range V--V correlations that would be suggestive of local dimers is found in the metallic phase.
In multiferroic BiFeO3 thin films grown on highly mismatched LaAlO3 substrates, we reveal the coexistence of two differently distorted polymorphs that leads to striking features in the temperature dependence of the structural and multiferroic propert ies. Notably, the highly distorted phase quasi-concomitantly presents an abrupt structural change, transforms from a hard to a soft ferroelectric and transitions from antiferromagnetic to paramagnetic at 360+/-20 K. These coupled ferroic transitions just above room temperature hold promises of giant piezoelectric, magnetoelectric and piezomagnetic responses, with potential in many applications fields.
Rutile ($R$) phase VO$_2$ is a quintessential example of a strongly correlated bad-metal, which undergoes a metal-insulator transition (MIT) concomitant with a structural transition to a V-V dimerized monoclinic phase below T$_{MIT} sim 340K$. It has been experimentally shown that one can control this transition by doping VO$_2$. In particular, doping with oxygen vacancies ($V_O$) has been shown to completely suppress this MIT {em without} any structural transition. We explain this suppression by elucidating the influence of oxygen-vacancies on the electronic-structure of the metallic $R$ phase VO$_2$, explicitly treating strong electron-electron correlations using dynamical mean-field theory (DMFT) as well as diffusion Monte Carlo (DMC) flavor of quantum Monte Carlo (QMC) techniques. We show that $V_O$s tend to change the V-3$d$ filling away from its nominal half-filled value, with the $e_{g}^{pi}$ orbitals competing with the otherwise dominant $a_{1g}$ orbital. Loss of this near orbital polarization of the $a_{1g}$ orbital is associated with a weakening of electron correlations, especially along the V-V dimerization direction. This removes a charge-density wave (CDW) instability along this direction above a critical doping concentration, which further suppresses the metal-insulator transition. Our study also suggests that the MIT is predominantly driven by a correlation-induced CDW instability along the V-V dimerization direction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا