ترغب بنشر مسار تعليمي؟ اضغط هنا

A simple resolution of Stokes paradox?

163   0   0.0 ( 0 )
 نشر من قبل William Shaw
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف William T. Shaw




اسأل ChatGPT حول البحث

This paper proposes a solution to Stokes paradox for asymptotically uniform viscous flow around a cylinder. The existence of a {it global} stream function satisfying a perturbative form of the two-dimensional Navier-Stokes equations for low Reynolds number is established. This stream function satisfies the appropriate boundary conditions on both the cylinder and at infinity, but nevertheless agrees with Stokes original results at finite radius as the Reynolds number tends to zero. The Navier-Stokes equations are satisfied to a power-log power of the Reynolds number. The drag on the cylinder is calculated from first principles and the free parameter of the approach can be chosen to give good agreement with data on drag. In this revised working paper we put our approach on a firmer mathematical basis using the Helmholtz-Laplace equation as a linear approximation to the Navier-Stokes system. In so doing we demonstrate the instability of the original paradox. We also demonstrate the absence of a paradox of Stokes-Whitehead class, and give further theoretical constraints on the free parameters of the model.


قيم البحث

اقرأ أيضاً

We introduce a model of interacting singularities of Navier-Stokes, named pin,cons. They follow a Hamiltonian dynamics, obtained by the condition that the velocity field around these singularities obeys locally Navier-Stokes equations. This model can be seen of a generalization of the vorton model of Novikov, that was derived for the Euler equations. When immersed in a regular field, the pin,cons are further transported and sheared by the regular field, while applying a stress onto the regular field, that becomes dominant at a scale that is smaller than the Kolmogorov length. We apply this model to compute the motion of a dipole of pin,cons. When the initial relative orientation of the dipole is inside the interval (0, pi/2), a dipole made of pin,con of same intensity exhibits a transient collapse stage, following a scaling with dipole radius tending to 0 like (tc - t) power 0.63. For long time, the dynamics of the dipole is however repulsive, with both components running away from each other to infinity.
We investigate the all-penetrating drift velocities, due to surface wave motion in an effectively inviscid fluid that overlies a saturated porous bed of finite depth. Previous work in this area either neglects the large-scale flow between layers [Phi llips (1991)] or only considers the drift above the porous layer [(Monismith (2007)]. We propose a model where flow is described by a velocity potential above the porous layer, and by Darcys law in the porous bed, with derived matching conditions at the interface between the two layers. The damping effect of the porous bed requires a complex wavenumber k and both a vertical and horizontal Stokes drift of the fluid, unlike the solely horizontal drift first derived by Stokes Stokes (1847) in a pure fluid layer. Our work provides a physical model for coral reefs in shallow seas, where fluid drift both above and within the reef is vitally important for maintaining a healthy reef ecosystem [Koehl et al. (1997), Monismith (2007)]. We compare our model with measurements by Koehl & Hadfield (2004) and also explain the vertical drift effects described in Koehl et al. (2007), who measured the exchange between a coral reef layer and the (relatively shallow) sea above.
235 - Yudong Zhang , Aiguo Xu , 2018
Discrete Boltzmann model (DBM) is a type of coarse-grained mesoscale kinetic model derived from the Boltzmann equation. Physically, it is roughly equivalent to a hydrodynamic model supplemented by a coarse-grained model for the relevant thermodynamic non-equilibrium (TNE) behaviours. The Navier-Stokes (NS) model is a traditional macroscopic hydrodynamic model based on continuity hypothesis and conservation laws. In this study, the two models are compared from two aspects, physical capability and computational cost, by simulating two kinds of flow problems including the thermal Couette flow and a Mach 3 step problem. In the cases where the TNE effects are weak, both the two models give accurate results for the hydrodynamic behaviour. Besides, DBM can provide more detailed non-equilibrium information, while the NS is more efficient if concern only the density, momentum, energy and their derived quantities. It is concluded that, if the TNE effects are strong or are to be investigated, the NS is insufficient while DBM is a good choice. While in the cases where the TNE effects are weak and only the macro flow fields are to be studied, the NS is more preferable.
283 - Songze Chen , Zhaoli Guo , Kun Xu 2019
The hydrostatic equilibrium state is the consequence of the exact hydrostatic balance between hydrostatic pressure and external force. Standard finite volume or finite difference schemes cannot keep this balance exactly due to their unbalanced trunca tion errors. In this study, we introduce an auxiliary variable which becomes constant at isothermal hydrostatic equilibrium state and propose a well-balanced gas kinetic scheme for the Navier-Stokes equations with a global reconstruction. Through reformulating the convection term and the force term via the auxiliary variable, zero numerical flux and zero numerical source term are enforced at the hydrostatic equilibrium state instead of the balance between hydrostatic pressure and external force. Several problems are tested numerically to demonstrate the accuracy and the stability of the new scheme, and the results confirm that, the new scheme can preserve the exact hydrostatic solution. The small perturbation riding on hydrostatic equilibria can be calculated accurately. The viscous effect is also illustrated through the propagation of small perturbation and the Rayleigh-Taylor instability. More importantly, the new scheme is capable of simulating the process of converging towards hydrostatic equilibrium state from a highly non-balanced initial condition. The ultimate state of zero velocity and constant temperature is achieved up to machine accuracy. As demonstrated by the numerical experiments, the current scheme is very suitable for small amplitude perturbation and long time running under gravitational potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا