ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite-size anisotropy in statistically uniform porous media

245   0   0.0 ( 0 )
 نشر من قبل Maciej Matyka
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Anisotropy of the permeability tensor in statistically uniform porous media of sizes used in typical computer simulations is studied. Although such systems are assumed to be isotropic by default, we show that de facto their anisotropic permeability can give rise to significant changes of transport parameters such as permeability and tortuosity. The main parameter controlling the anisotropy is $a/L$, being the ratio of the obstacle to system size. Distribution of the angle $alpha$ between the external force and the volumetric fluid stream is found to be approximately normal, and the standard deviation of $alpha$ is found to decay with the system size as $(a/L)^{d/2}$, where $d$ is the space dimensionality. These properties can be used to estimate both anisotropy-related statistical errors in large-scale simulations and the size of the representative elementary volume.



قيم البحث

اقرأ أيضاً

We investigate the elastoviscoplastic flow through porous media by numerical simulations. We solve the Navier-Stokes equations combined with the elastoviscoplastic model proposed by Saramito for the stress tensor evolution. In this model, the materia l behaves as a viscoelastic solid when unyielded, and as a viscoelastic Oldroyd-B fluid for stresses higher than the yield stress. The porous media is made of a symmetric array of cylinders, and we solve the flow in one periodic cell. We find that the solution is time-dependent even at low Reynolds numbers as we observe oscillations in time of the unyielded region especially at high Bingham numbers. The volume of the unyielded region slightly decreases with the Reynolds number and strongly increases with the Bingham number; up to 70% of the total volume is unyielded for the highest Bingham numbers considered here. The flow is mainly shear dominated in the yielded region, while shear and elongational flow are equally distributed in the unyielded region. We compute the relation between the pressure drop and the flow rate in the porous medium and present an empirical closure as function of the Bingham and Reynolds numbers. The apparent permeability, normalized with the case of Newtonian fluids, is shown to be greater than 1 at low Bingham numbers, corresponding to lower pressure drops due to the flow elasticity, and smaller than 1 for high Bingham numbers, indicating larger dissipation in the flow owing to the presence of the yielded regions. Finally we investigate the effect of the Weissenberg number on the distribution of the unyielded regions and on the pressure gradient.
Transport of viscous fluid through porous media is a direct consequence of the pore structure. Here we investigate transport through a specific class of two-dimensional porous geometries, namely those formed by fluid-mechanical erosion. We investigat e the tortuosity and dispersion by analyzing the first two statistical moments of tracer trajectories. For most initial configurations, tortuosity decreases in time as a result of erosion increasing the porosity. However, we find that tortuosity can also increase transiently in certain cases. The porosity-tortuosity relationships that result from our simulations are compared with models available in the literature. Asymptotic dispersion rates are also strongly affected by the erosion process, as well as by the number and distribution of the eroding bodies. Finally, we analyze the pore size distribution of an eroding geometry. The simulations are performed by combining a high-fidelity boundary integral equation solver for the fluid equations, a second-order stable time stepping method to simulate erosion, and new numerical methods to stably and accurately resolve nearly-touching eroded bodies and particle trajectories near the eroding bodies.
Imbibition plays a central role in diverse energy, environmental, and industrial processes. In many cases, the medium has multiple parallel strata of different permeabilities; however, how this stratification impacts imbibition is poorly understood. We address this gap in knowledge by directly visualizing forced imbibition in three-dimensional (3D) porous media with two parallel strata. We find that imbibition is spatially heterogeneous: for small capillary number Ca, the wetting fluid preferentially invades the fine stratum, while for Ca above a threshold value, the fluid instead preferentially invades the coarse stratum. This threshold value depends on the medium geometry, the fluid properties, and the presence of residual wetting films in the pore space. These findings are well described by a linear stability analysis that incorporates crossflow between the strata. Thus, our work provides quantitative guidelines for predicting and controlling flow in stratified porous media.
We investigate the chemical dissolution of porous media using a network model in which the system is represented as a series of interconnected pipes with the diameter of each segment increasing in proportion to the local reactant consumption. Moreove r, the topology of the network is allowed to change dynamically during the simulation: as the diameters of the eroding pores become comparable with the interpore distances, the pores are joined together thus changing the interconnections within the network. With this model, we investigate different growth regimes in an evolving porous medium, identifying the mechanisms responsible for the emergence of specific patterns. We consider both the random and regular network and study the effect of the network geometry on the patterns. Finally, we consider practically important problem of finding an optimum flow rate that gives a maximum increase in permeability for a given amount of reactant.
161 - Si Suo , Yixiang Gan 2020
Immiscible fluid-fluid displacement in porous media is of great importance in many engineering applications, such as enhanced oil recovery, agricultural irrigation, and geologic CO2 storage. Fingering phenomena, induced by the interface instability, are commonly encountered during displacement processes and somehow detrimental since such hydrodynamic instabilities can significantly reduce displacement efficiency. In this study, we report a possible adjustment in pore geometry which aims to suppress the capillary fingering in porous media with hierarchical structures. Through pore-scale simulations and theoretical analysis, we demonstrate and quantify combined effects of wettability and hierarchical geometry on displacement patterns, showing a transition from fingering to compact mode. Our results suggest that with a higher porosity of the 2nd-order porous structure, the displacement can keep compact across a wider range of wettability conditions. Combined with our previous work on viscous fingering in such media, we can provide a complete insight into the fluid-fluid displacement control in hierarchical porous media, across a wide range of flow conditions from capillary- to viscous-dominated modes. The conclusions of this work can benefit the design of microfluidic devices, as well as tailoring porous media for better fluid displacement efficiency at the field scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا