ﻻ يوجد ملخص باللغة العربية
The measurement of nuclear Generalized Parton Distributions (GPDs) will represent a valuable tool to understand the structure of bound nucleons in the nuclear medium, as well as the role of non-nucleonic degrees of freedom in the phenomenology of hard scattering off nuclei. By using a realistic microscopic approach for the evaluation of GPDs of 3He, it will be shown that conventional nuclear effects, such as isospin and binding ones, or the uncertainty related to the use of a given nucleon-nucleon potential, are rather bigger than in the forward case. These findings suggest that, if great attention is not paid to infer the properties of nuclear GPDs from those of nuclear parton distributions, conventional nuclear effects can be easily mistaken for exotic ones. It is stressed therefore that 3He, for which the best realistic calculations are possible, represents a unique target to discriminate between conventional and exotic effects. The complementary information which could be obtained by using a 3H target is also addressed.
The measurement of nuclear Generalized Parton Distributions (GPDs) represents a valuable tool to understand the structure of bound nucleons and the phenomenology of hard scattering off nuclei. By using a realistic, non-relativistic microscopic approa
The generalized parton distribution H and E of the 3He nucleus, which could be measured in hard exclusive processes, such as coherent deeply virtual Compton scattering, are thoroughly analyzed in impulse approximation, within the Av18 interaction. It
An impulse approximation analysis is described of the generalized parton distributions (GPDs) H and E of the 3He nucleus, quantities which are accessible in hard exclusive processes, such as coherent deeply virtual Compton scattering (DVCS). The calc
We derive one-loop matching relations for the Ioffe-time distributions related to the pion distribution amplitude (DA) and generalized parton distributions (GPDs). They are obtained from a universal expression for the one-loop correction in an operat
We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N_f=2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independen