ترغب بنشر مسار تعليمي؟ اضغط هنا

A high resolution, hard X-ray photoemission investigation of BaFe$_2$As$_2$: moderate influence of the surface and evidence for a low degree of Fe 3d - As 4p hybridization of the near-E$_F$ electronic states

37   0   0.0 ( 0 )
 نشر من قبل Sanne Jong de
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photoemission data taken with hard X-ray radiation on cleaved single crystals of the barium parent compound of the MFe$_2$As$_2$ pnictide high temperature superconductor family are presented. Making use of the increased bulk-sensitivity upon hard X-ray excitation, and comparing the results to data taken at conventional VUV photoemission excitation energies, it is shown that the BaFe$_2$As$_2$ cleavage surface provides an electrostatic environment that is slightly different to the bulk, most likely in the form of a modified Madelung potential. However, as the data argue against a different surface doping level, and the surface-related features in the spectra are by no means as dominating as seen in systems such as YBa$_2$Cu$_3$O$_x$, we can conclude that the itinerant, near-E$_F$ electronic states are almost unaffected by the existence of the cleavage surface. Furthermore, exploiting the strong changes in photoionisation cross section between the Fe and As states across the wide photon energy range employed, it is shown that the degree of energetic overlap between the iron 3d and arsenic 4p valence bands is particularly small at the Fermi level, which can only mean a very low degree of hybridization between the Fe 3d and As 4p states near and at E$_F$. Consequently, the itinerancy of the charge carriers in this group of materials involves mainly the Fe 3d - Fe 3d overlap integrals with at best a minor role for the Fe 3d - As 4p hopping parameters, and that the states which support superconductivity upon doping are essentially of Fe 3d character.

قيم البحث

اقرأ أيضاً

On experimental side, BaFe$_2$As$_2$ without doping has been made superconducting by applying appropriate pressure (2-6 GPa). Here, we use a full-potential linearized augmented plane wave method within the density-functional theory to investigate the effect of pressure on its crystal structure, magnetic order, and electronic structure. Our calculations show that the striped antiferromagnetic order observed in experiment is stable against pressure up to 13 GPa. Calculated antiferromagnetic lattice parameters are in good agreements with experimental data, while calculations with nonmagnetic state underestimate Fe-As bond length and c-axis lattice constant. The effects of pressure on crystal structure and electronic structure are investigated for both the antiferromagnetic state and the nonmagnetic one. We find that the compressibility of the antiferromagnetic state is quite isotropic up to about 6.4 GPa. With increasing pressure, the FeAs$_4$ tetrahedra is hardly distorted. We observe a transition of Fermi surface topology in the striped antiferromagnetic state when the compression of volume is beyond 8% (or pressure 6 GPa), which corresponds to a large change of $c/a$ ratio. These first-principles results should be useful to understanding the antiferromagnetism and electronic states in the FeAs-based materials, and may have some useful implications to the superconductivity.
152 - Y. K. Kim , Hyungju Oh , Chul Kim 2010
We performed angle resolved photoelectron spectroscopy (ARPES) studies on mechanically detwinned BaFe2As2. We observe clear band dispersions and the shapes and characters of the Fermi surfaces are identified. Shapes of the two hole pockets around the {Gamma}-point are found to be consistent with the Fermi surface topology predicted in the orbital ordered states. Dirac-cone like band dispersions near the {Gamma}-point are clearly identified as theoretically predicted. At the X-point, split bands remain intact in spite of detwinning, barring twinning origin of the bands. The observed band dispersions are compared with calculated band structures. With a magnetic moment of 0.2 ?B per iron atom, there is a good agreement between the calculation and experiment.
Synchrotron x-ray diffraction experiments were performed on BaFe$_2$As$_2$ and Sr(Fe$_{1-x}$Co$_{x}$)$_2$As$_2$ single crystals as a function of temperature and applied magnetic field along the tetragonal $[1 bar{1} 0]$ direction, complemented by ele ctrical resistivity and specific heat experiments. For a BaFe$_2$As$_2$ crystal with spin-density-wave antiferromagnetic ordering temperature $T_{AF}=132.5$ K and onset of the orthorhombic phase at $T_{o}=137$ K, the magnetic field favors the growth of tetragonal domains that compete with orthorhombic ones for $T gtrsim T_{AF}$. For a Sr(Fe$_{1-x}$Co$_{x}$)$_2$As$_2$ crystal with more separated transitions ($T_{AF} = 132$ K and $T_{o} = 152$ K), the crystal structure also shows significant field-dependence in a narrow temperature interval close to $T_{AF}$. These results favor magnetism as the driver of the structural and nematic transitions in 122 Fe pnictides.
160 - L. X. Yang , Y. Zhang , H. W. Ou 2008
The magnetic properties in the parent compounds are often intimately related to the microscopic mechanism of superconductivity. Here we report the first direct measurements on the electronic structure of a parent compound of the newly discovered iron -based superconductor, BaFe$_2$As$_2$, which provides a foundation for further studies. We show that the energy of the spin density wave (SDW) in BaFe$_2$As$_2$ is lowered through exotic exchange splitting of the band structure, rather than Fermi surface nesting of itinerant electrons. This clearly demonstrates that a metallic SDW state could be solely induced by interactions of local magnetic moments, resembling the nature of antiferromagnetic order in cuprate parent compounds.
We have conducted a comprehensive angle-resolved photoemission study on the normal state electronic structure of the Fe-based superconductor Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$. We have identified four dispersive bands which cross the Fermi level and for m two hole-like Fermi surfaces around $Gamma$ and two electron-like Fermi surfaces around M. There are two nearly nested Fermi surface pockets connected by an antiferromagnetic ($pi$, $pi$) wavevector. The observed Fermi surfaces show small $k_z$ dispersion and a total volume consistent with Luttinger theorem. Compared to band structure calculations, the overall bandwidth is reduced by a factor of 2. However, many low energy dispersions display stronger mass renormalization by a factor of $sim$ 4, indicating possible orbital (energy) dependent correlation effects. Using an effective tight banding model, we fitted the band structure and the Fermi surfaces to obtain band parameters reliable for theoretical modeling and calculations of the important physical quantities, such as the specific heat coefficient.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا