ترغب بنشر مسار تعليمي؟ اضغط هنا

Field-induced magnetic phases and electric polarization in LiNiPO4

151   0   0.0 ( 0 )
 نشر من قبل Thomas Bagger Stibius Jensen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutron diffraction is used to probe the (H,T) phase diagram of magneto-electric (ME) LiNiPO4 for magnetic fields along the c-axis. At zero field the Ni spins order in two antiferromagnetic phases. One has commensurate (C) structures and general ordering vectors (0,0,0), the other one is incommensurate (IC) with ordering vector (0,q,0). At low temperatures the C order collapses above 12 Tesla and adopts an IC structure with modulation vector parallel to (0,q,0). We show that C order is required for the ME effect and establish how electric polarization results from a field-induced reduction of the total magneto-elastic energy.



قيم البحث

اقرأ أيضاً

Detailed spin-wave spectra of magneto-electric LiNiPO4 have been measured by neutron scattering at low temperatures in the commensurate (C) antiferromagnetic (AF) phase with ordering temperature 20.8 K. An anomalous low-energy mode is observed at the modulation vector of the incommensurate (IC) AF phase appearing above the 20.8 K. A linear spin-wave model based on Heisenberg exchange couplings and single ion anisotropies accounts for all the observed spin-wave dispersions and intensities. Along the b axis an unusually strong next-nearest-neighbor AF coupling competes with the dominant nearest-neighbor AF exchange interaction and causes the IC structure.
Our results describe an unprecedented example of change in the mechanism of magnetically-induced electric polarization from spin current to spin-dependent p-d hybridization model. We have followed the evolution of the magnetic structures of (ND4)2[Fe Cl5 D2O] compound using single crystal neutron diffraction under external magnetic field. The spin arrangements change from incommensurate cycloidal to commensurate distorted-cycloidal and finally to quasi-collinear. The determination of the magnetic structures allows us to explain the observed electric polarization in the different ferroelectric phases. Two different magneto-electric coupling mechanisms are at play: the spin-current mechanism for external magnetic field below 5 T, and the spin dependent p-d hybridization mechanism for magnetic field above this value, being this compound the first example reported presenting this sequence of magneto-electric coupling mechanisms.
We report on the electric field control of magnetic phase transition temperatures in multiferroic Ni3V2O8 thin films. Using magnetization measurements, we find that the phase transition temperature to the canted antiferromagnetic state is suppressed by 0.2 K in an electric field of 30 MV/m, as compared to the unbiased sample. Dielectric measurements show that the transition temperature into the magnetic state associated with ferroelectric order increases by 0.2 K when the sample is biased at 25 MV/m. This electric field control of the magnetic transitions can be qualitatively understood using a mean field model incorporating a tri-linear coupling between the magnetic order parameters and spontaneous polarization.
The magnetic properties of two-dimensional VI3 bilayer are the focus of our first-principles analysis, highlighting the role of trigonal crystal-field effects and carried out in comparison with the CrI3 prototypical case, where the effects are absent . In VI3 bilayers, the empty a1g state - consistent with the observed trigonal distortion - is found to play a crucial role in both stabilizing the insulating state and in determining the inter-layer magnetic interaction. Indeed, an analysis based on maximally localized Wannier functions allows to evaluate the interlayer exchange interactions in two different VI3 stackings (labelled AB and AB), to interpret the results in terms of virtual-hopping mechanism, and to highlight the strongest hopping channels underlying the magnetic interlayer coupling. Upon application of electric fields perpendicular to the slab, we find that the magnetic ground-state in the AB stacking can be switched from antiferromagnetic to ferromagnetic, suggesting VI3 bilayer as an appealing candidate for electric-field-driven miniaturized spintronic devices.
The dynamic observation of domain wall motion induced by electric field in magnetoelectric iron garnet film is reported. Measurements in 800 kV/cm electric field pulses gave the domain wall velocity ~45 m/s. Similar velocity was achieved in magnetic field pulse about 50 Oe. Reversible and irreversible micromagnetic structure transformation is demonstrated. These effects are promising for applications in spintronics and magnetic memory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا