ﻻ يوجد ملخص باللغة العربية
This paper develops mathematical models describing the evolutionary dynamics of both asexually and sexually reproducing populations of diploid unicellular organisms. We consider two forms of genome organization. In one case, we assume that the genome consists of two multi-gene chromosomes, while in the second case we assume that each gene defines a separate chromosome. If the organism has $ l $ homologous pairs that lack a functional copy of the given gene, then the fitness of the organism is $ kappa_l $. The $ kappa_l $ are assumed to be monotonically decreasing, so that $ kappa_0 = 1 > kappa_1 > kappa_2 > ... > kappa_{infty} = 0 $. For nearly all of the reproduction strategies we consider, we find, in the limit of large $ N $, that the mean fitness at mutation-selection balance is $ max{2 e^{-mu} - 1, 0} $, where $ N $ is the number of genes in the haploid set of the genome, $ epsilon $ is the probability that a given DNA template strand of a given gene produces a mutated daughter during replication, and $ mu = N epsilon $. The only exception is the sexual reproduction pathway for the multi-chromosomed genome. Assuming a multiplicative fitness landscape where $ kappa_l = alpha^{l} $ for $ alpha in (0, 1) $, this strategy is found to have a mean fitness that exceeds the mean fitness of all of the other strategies. Furthermore, while the other reproduction strategies experience a total loss of viability due to the steady accumulation of deleterious mutations once $ mu $ exceeds $ ln 2 $, no such transition occurs in the sexual pathway. The results of this paper demonstrate a selective advantage for sexual reproduction with fewer and much less restrictive assumptions than previous work.
This paper develops a simplified set of models describing asexual and sexual replication in unicel- lular diploid organisms. The models assume organisms whose genomes consist of two chromosomes, where each chromosome is assumed to be functional if it
To counterbalance the views presented here by Suzana Moss de Oliveira, we explain here the truth: How men are oppressed by Mother Nature, who may have made an error inventing us, and by living women, who could get rid of most of us. Why do women live
The question as to why most higher organisms reproduce sexually has remained open despite extensive research, and has been called the queen of problems in evolutionary biology. Theories dating back to Weismann have suggested that the key must lie in
This paper studies the mutation-selection balance in three simplified replication models. The first model considers a population of organisms replicating via the production of asexual spores. The second model considers a sexually replicating populati
In simulations of sexual reproduction with diploid individuals, we introduce that female haploid gametes recognize one specific allele of the genomes as a marker of the male haploid gametes. They fuse to zygotes preferrably with male gametes having a