ترغب بنشر مسار تعليمي؟ اضغط هنا

Blue Hook Stars in Globular Clusters

159   0   0.0 ( 0 )
 نشر من قبل Andrea Dieball
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Blue hook (BHk) stars are a rare class of horizontal branch stars that so far have been found in only very few Galactic globular clusters (GCs). The dominant mechanism for producing these objects is currently still unclear. In order to test if the presence of BHk populations in a given GC is linked to specific physical or structural cluster properties, we have constructed a parent sample of GCs for which existing data is sufficient to establish the presence or absence of BHk populations with confidence. We then compare the properties of those clusters in our parent sample that do contain a BHk population to those that do not. We find that there is only one compelling difference between BHk and non-BHk clusters: all known BHk clusters are unusually massive. However, we also find that the BHk clusters are consistent with being uniformly distributed within the cumulative mass distribution of the parent sample. Thus, while it is attractive to suggest there is is a lower mass cut-off for clusters capable of forming BHk stars, the data do not require this. Instead, the apparent preference for massive clusters could still be a purely statistical effect: intrinsically rare objects can only be found by searching a sufficiently large number of stars.



قيم البحث

اقرأ أيضاً

It was recently demonstrated that contact binaries occur in globular clusters (GCs) only immediately below turn-off point and in the region of blue straggler stars (BSs). In addition, observations indicate that at least a significant fraction of BSs in these clusters was formed by the binary mass-transfer mechanism. The aim of our present investigation is to obtain and analyze a set of evolutionary models of cool, close detached binaries with a low metal abundance, which are characteristic of GC. We computed the evolution of 975 models of initially detached, cool close binaries with different initial parameters. The models include mass exchange between components as well as mass and angular momentum loss due to the magnetized winds for very low-metallicity binaries with Z = 0.001. The models are interpreted in the context of existing data on contact binary and blue straggler members of GCs. The model parameters agree well with the observed positions of the GC contact binaries in the Hertzsprung-Russell diagram. Contact binaries in the lower part of the cluster main sequence are absent because there are no binaries with initial orbital periods shorter than 1.5 d. Contact binaries end their evolution as mergers that appear in the BS region. Binary-formed BSs populate the whole observed BS region in a GC, but a gap is visible between low-mass mergers that are concentrated along the zero-age main sequence and binary BSs occupying the red part of the BS region. Very few binary mergers are expected to rotate rapidly and/or possess chemical peculiarities resulting from the exposure of the layers processed by CNO nuclear reactions. All other binary mergers are indistinguishable from the collisionally formed mergers. The results show that binary-formed BSs may constitute at least a substantial fraction of all BSs in a GC.
Recent HST observations of a large sample of globular clusters reveal that every cluster contains between 40 and 400 blue stragglers. The population does not correlate with either stellar collision rate (as would be expected if all blue stragglers we re formed via collisions) or total mass (as would be expected if all blue stragglers were formed via the unhindered evolution of a subset of the stellar population). In this paper, we support the idea that blue stragglers are made through both channels. The number produced via collisions tends to increase with cluster mass. In this paper we show how the current population produced from primordial binaries decreases with increasing cluster mass; exchange encounters with third, single, stars in the most massive clusters tend to reduce the fraction of binaries containing a primary close to the current turn-off mass. Rather their primaries tend to be somewhat more massive (~1-3 M_sun) and have evolved off the main sequence, filling their Roche lobes in the past, often converting their secondaries into blue stragglers (but more than 1 Gyr or so ago and thus they are no longer visible as blue stragglers). We show that this decline in the primordial blue straggler population is likely to be offset by the increase in the number of blue stragglers produced via collisions. The predicted total blue straggler population is therefore relatively independent of cluster mass, thus matching the observed population. This result does not depend on any particular assumed blue straggler lifetime.
316 - F. R. Ferraro 2010
Stars in globular clusters are generally believed to have all formed at the same time, early in the Galaxys history. Blue stragglers are stars massive enough that they should have evolved into white dwarfs long ago. Two possible mechanisms have been proposed for their formation: mass transfer between binary companions and stellar mergers resulting from direct collisions between two stars. Recently, the binary explanation was claimed to be dominant. Here we report that there are two distinct parallel sequences of blue stragglers in M30. This globular cluster is thought to have undergone core collapse, during which both the collision rate and the mass transfer activity in binary systems would have been enhanced. We suggest that the two observed sequences arise from the cluster core collapse, with the bluer population arising from direct stellar collisions and the redder one arising from the evolution of close binaries that are probably still experiencing an active phase of mass transfer.
Even though plenty of symbiotic stars (SySts) have been found in the Galactic field and nearby galaxies, not a single one has ever been confirmed in a Galactic globular cluster (GC). We investigate the lack of such systems in GCs for the first time b y analysing 144 GC models evolved with the MOCCA code, which have different initial properties and are roughly representative of the Galactic GC population. We focus here on SySts formed through the wind-accretion channel, which can be consistently modelled in binary population synthesis codes. We found that the orbital periods of the majority of such SySts are sufficiently long (${gtrsim10^3}$ d) so that, for very dense GC models, dynamical interactions play an important role in destroying their progenitors before the present day (${sim11-12}$ Gyr). In less dense GC models, some SySts are still predicted to exist. However, these systems tend to be located far from the central parts (${gtrsim70}$ per cent are far beyond the half-light radius) and are sufficiently rare (${lesssim1}$ per GC per Myr), which makes their identification rather difficult in observational campaigns. We propose that future searches for SySts in GCs should be performed in the outskirts of nearby low-density GCs with sufficiently long half-mass relaxation times and relatively large Galactocentric distances. Finally, we obtained spectra of the candidate proposed in $omega$ Cen (SOPS IV e-94) and showed that this object is most likely not a SySt.
The formation histories of globular clusters (GCs) are a key diagnostic for understanding their relation to the evolution of the Universe through cosmic time. We use the suite of 25 cosmological zoom-in simulations of present-day Milky Way-mass galax ies from the E-MOSAICS project to study the formation histories of stars, clusters, and GCs, and how these are affected by the environmental dependence of the cluster formation physics. We find that the median lookback time of GC formation in these galaxies is ${sim}10.73~$Gyr ($z=2.1$), roughly $2.5~$Gyr earlier than that of the field stars (${sim}8.34~$Gyr or $z=1.1$). The epoch of peak GC formation is mainly determined by the time evolution of the maximum cluster mass, which depends on the galactic environment and largely increases with the gas pressure. Different metallicity subpopulations of stars, clusters and GCs present overlapping formation histories, implying that star and cluster formation represent continuous processes. The metal-poor GCs ($-2.5<[rm Fe/H]<-1.5$) of our galaxies are older than the metal-rich GC subpopulation ($-1.0<[rm Fe/H]<-0.5$), forming $12.13~$Gyr and $10.15~$Gyr ago ($z=3.7$ and $z=1.8$), respectively. The median ages of GCs are found to decrease gradually with increasing metallicity, which suggests different GC metallicity subpopulations do not form independently and their spatial and kinematic distributions are the result of their evolution in the context of hierarchical galaxy formation and evolution. We predict that proto-GC formation is most prevalent at $2lesssim z lesssim 3$, which could be tested with observations of lensed galaxies using JWST.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا