ﻻ يوجد ملخص باللغة العربية
A comprehensive ellipsometric study was performed on Fe$_{1-x}$Co$_{x}$Si single crystals in the spectral range from 0.01 eV to 6.2 eV. Direct and indirect band gaps of 73 meV and 10 meV, respectively, were observed in FeSi at 7 K. One of four infrared-active phonons that is energetically close to the direct absorption edge is coupled both to the electrons and to the low-energy phonon. This is evident from asymmetry in the phonon line shape and a reduction of its frequency when the absorption edge shifts across the phonon energy due to the temperature dependence of the direct band gap. As the temperature increases, the indirect gap changes sign, which manifests as a transition from a semiconductor to a semimetal. The corresponding gain of the spectral weight at low energies was recovered within an energy range of several eV. The present findings strongly support the model indicating that Fe$_{1-x}$Co$_{x}$Si can be well described in an itinerant picture, taking into account self-energy corrections.
We present a theoretical analysis of the magnetic phase diagram of CeTi$_{1-x}$Sc$_{x}$Ge and GdFe$_{1-x}$Co$_{x}$Si as a function of the temperature and the Sc and Co concentration $x$, respectively. CeScGe and GdCoSi, as many other RTX (R=rare eart
The magnetic properties of Zn$_{1-x}$Co$_x$O ($x=0.07$ and 0.10) thin films, which were homo-epitaxially grown on a ZnO(0001) substrates with varying relatively high oxygen pressure, have been investigated using x-ray magnetic circular dichroism (XMC
We compute the magnetocaloric effect (MCE) in the GdTX (T=Sc, Ti, Co, Fe; X=Si, Ge) compounds as a function of the temperature and the external magnetic field. To this end we use a density functional theory approach to calculate the exchange-coupling
This study presents the effect of local electronic correlations on the Heusler compounds Co$_2$Mn$_{1-x}$Fe$_x$Si as a function of the concentration $x$. The analysis has been performed by means of first-principles band-structure calculations based o
The local atomic environments and magnetic properties were investigated for a series of Co(1+x)Fe(2-x)Si (0<x<1) Heusler compounds. While the total magnetic moment in these compounds increases with the number of valance electrons, the highest Curie t