ترغب بنشر مسار تعليمي؟ اضغط هنا

Entangled Quantum Key Distribution with a Biased Basis Choice

127   0   0.0 ( 0 )
 نشر من قبل Christopher Erven
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a quantum key distribution (QKD) scheme which utilizes a biased basis choice in order to increase the efficiency of the scheme. The optimal bias between the two measurement bases, a more refined error analysis, and finite key size effects are all studied in order to assure the security of the final key generated with the system. We then implement the scheme in a local entangled QKD system that uses polarization entangled photon pairs to securely distribute the key. A 50/50 non-polarizing beamsplitter with different optical attenuators is used to simulate a variable beamsplitter in order to allow us to study the operation of the system for different biases. Over 6 hours of continuous operation with a total bias of 0.9837/0.0163 (Z/X), we were able to generate 0.4567 secure key bits per raw key bit as compared to 0.2550 secure key bits per raw key bit for the unbiased case. This represents an increase in the efficiency of the key generation rate by 79%.

قيم البحث

اقرأ أيضاً

Device-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network. It thus represents the ultimate form of cryptography, offering not only information-theoretic security against channel attacks, but also against attacks exploiting implementation loopholes. In recent years, much progress has been made towards realising the first DIQKD experiments, but current proposals are just out of reach of todays loophole-free Bell experiments. Here, we significantly narrow the gap between the theory and practice of DIQKD with a simple variant of the original protocol based on the celebrated Clauser-Horne-Shimony-Holt (CHSH) Bell inequality. By using two randomly chosen key generating bases instead of one, we show that our protocol significantly improves over the original DIQKD protocol, enabling positive keys in the high noise regime for the first time. We also compute the finite-key security of the protocol for general attacks, showing that approximately 1E8 to 1E10 measurement rounds are needed to achieve positive rates using state-of-the-art experimental parameters. Our proposed DIQKD protocol thus represents a highly promising path towards the first realisation of DIQKD in practice.
Two-qubit quantum codes have been suggested to obtain better efficiency and higher loss tolerance in quantum key distribution. Here, we propose a two-qubit quantum key distribution protocol based on a mixed basis consisting of two Bell states and two states from the computational basis. All states can be generated from a single entangled photon pair resource by using local operations on only one auxiliary photon. Compared to other schemes it is also possible to deterministically discriminate all states using linear optics. Additionally, our protocol can be implemented with todays technology. When discussing the security of our protocol we find a much improved resistance against certain attacks as compared to the standard BB84 protocol.
We present an entangled-state quantum cryptography system that operated for the first time in a real world application scenario. The full key generation protocol was performed in real time between two distributed embedded hardware devices, which were connected by 1.45 km of optical fiber, installed for this experiment in the Vienna sewage system. The generated quantum key was immediately handed over and used by a secure communication application.
Despite the enormous theoretical and experimental progress made so far in quantum key distribution (QKD), the security of most existing QKD implementations is not rigorously established yet. A critical obstacle is that almost all existing security pr oofs make ideal assumptions on the QKD devices. Problematically, such assumptions are hard to satisfy in the experiments, and therefore it is not obvious how to apply such security proofs to practical QKD systems. Fortunately, any imperfections and security-loopholes in the measurement devices can be perfectly closed by measurement-device-independent QKD (MDI-QKD), and thus we only need to consider how to secure the source devices. Among imperfections in the source devices, correlations between the sending pulses are one of the principal problems. In this paper, we consider a setting-choice-independent correlation (SCIC) framework in which the sending pulses can present arbitrary correlations but they are independent of the previous setting choices such as the bit, the basis and the intensity settings. Within the framework of SCIC, we consider the dominant fluctuations of the sending states, such as the relative phases and the intensities, and provide a self-contained information theoretic security proof for the loss-tolerant QKD protocol in the finite-key regime. We demonstrate the feasibility of secure quantum communication within a reasonable number of pulses sent, and thus we are convinced that our work constitutes a crucial step toward guaranteeing implementation security of QKD.
Quantum key distribution---exchanging a random secret key relying on a quantum mechanical resource---is the core feature of secure quantum networks. Entanglement-based protocols offer additional layers of security and scale favorably with quantum rep eaters, but the stringent requirements set on the photon source have made their use situational so far. Semiconductor-based quantum emitters are a promising solution in this scenario, ensuring on-demand generation of near-unity-fidelity entangled photons with record-low multi-photon emission, the latter feature countering some of the best eavesdropping attacks. Here we first employ a quantum dot to experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches: both a 250 meter long single mode fiber and in free-space, connecting two buildings within the campus of Sapienza University in Rome. Our field study highlights that quantum-dot entangled-photon sources are ready to go beyond laboratory experiments, thus opening the way to real-life quantum communication.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا